
~OF

DTI
AN EDUCATIONAL EXPERT SYSTEM SHELL & ELECTE

INTEGRATING 1 JAN 1 7 1989
OBJECT-ATTRIBUTE-VALUE TRIPLES AND FRAMES S LE T

THESIS t
Eddy G. Clark
Captain, USAF

AFIT/GCE/ENG/88D-2

Apn-:

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 1 17 123

6)
AFIT/GCE/ENG/88D-2

S JAN 17 19893

AN EDUCATIONAL EXPERT SYSTEM SHELL
INTEGRATING

OBJECT-ATTRIBUTE-VALUE TRIPLES AND FRAMES

THESIS

Eddy G. Clark ActeSi' For
Captain, USAF NTIS C APt

DT;C ir* ' [
AFIT/GCE/ENG/88D-2 U r' ',

; -,.!P,

Approved for public release; distribution unlimited

AFIT/GCE/ENG/88D-2

0

AN EDUCATIONAL EXPERT SYSTEM SHELL

INTEGRATING

OBJECT-ATTRIBUTE-VALUE TRIPLES AND FRAMES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

0 Air University

In Partial Fulfillment of the

Requirements for the Degree of

* Master of Science in Computer Engineering

Eddy G. Clark, B.S.

Captain, USAF

December 1988

Approved for public release; distribution unlimited

0

Preface

The purpose of this thesis was to design and develop an

educational expert system shell (ESS) based upon object-attribute-value

(OAV) triples and frames. The developed ESS is to be used in part, or

in whole, in the artificial intelligence (AI) sequence at -AFIT.

Currently, the introductory course in the AI sequence at AFIT uses

* Prolog. In this course, the basic concepts of expert system shells are

examined using an ESS called BC3. BC3 was written in standard Clocksin

and Mellish Prolog to allow AFIT students to examine its code and

understand how the basic concepts of an ESS can be implemented. A

more advanced ESS, which allows for frames and uncertainties, will

expand the teaching advantages which are currently present in BC3.

This thesis was divided into four phases in order to make the

project more manageable in the time period allowed. This also allowed

progressive testing of each phase because each phase was more feature-

enhanced than the previous phase.

The four phases were chosen to correspond logically to the

requirements imposed upon this thesis. ABC is the result of follow-up

research and development of the existing BC3 EES. It seemed only

appropriate that the first phase should be to examine BC3 and make

minor changes to improve its efficiency or readability without changing

its functionality.

The next three phases of this thesis came from altering BC3 to a)

allow for a better user-interface, b) allow for frame knowledge

ii

representation, and c) allow for the representation of uncertain

• knowledge.

In designing and implementing ABC, and throughout the writing of

this thesis, I owe a large amount of gratitude to my thesis advisor, Dr

* F.M. Brown. Dr Brown provided a lot of his time in discussing the pros

and cons of different design considerations. He also pointed me to

several sources of much needed information and provided me with a

• seemingly endless number of critiques of my written work. Dr Brown's

support and motivation was a key factor in the success of this thesis.

I am also indebted to LTC Charles Bisbee and Capt Dave Umphress for

* their inputs into this thesis effort. Their direction and support

throughout this thesis, but especially in the early stages, was

invaluable. I also owe an endless amount of thanks to my wife,

* Christine, for the patience, support, and motivation she provided me

with throughout this thesis effort.

* Eddy G. Clark

iii

Table of Contents

* Page

Preface ii

List of Figures viii

Abstract x

I. Introduction. 1-1

Background 1-1
*Problems With BC3 1-3

Assumptions. 1-4
Scope. 1-5
Methodology. 1-6
Overview 1-8

*II. Background. 2-1

Definitions. 2-1
Artificial Intelligence. 2-1
Expert Systems 2-2
Knowledge Base 2-2

*Production Rules 2-4
Frames. 2-6
Object-Attribute-Value Triples..........2-8

Uncertainties. 2-8
Certainty Factors..... 2-9

*Quantifiers. 2-9
Probabilistic Confidence Factors. 2-10

Inference Mechanisms and Methods 2-11
Forward Chaining. 2-11
Backward Chaining 2-11

*Other Elements of Inferencing 2-12

Prolog. 2-13

Commercial Expert System Shells. 2-13
KEE. 2-14
M.1. 2-18
Personal Consultant Plus. 2-20
Goldworks 2-21

iv

III. An Overviewvof ABC. 3-1

*Knowledge Representations 3-1
Facts 3-2
Rules 3-4
Askables. 3-5
Frames. 3-7

*Working Memory 3-8

IV. BC3 - Phase One: The Origin of ABC 4-1

Knowledge Representations 4-1

*The How Trace. 473

The Why Trace. 4-4

User Interface 4-5

BC3 Problems and Solutions. 4-6
The is known Predicate 4-7
Altering The Trace Mechanisms. 4-9
Testing Solutions. 4-9

V. Phase Two: ABC's User Interface. 5-1

The Two Types of Users. 5-1

The Command Line 5-2

The Developer's Interface 5-3

Single Quotes: An Alternate to Prolog Lists 5-4
ABC Commands For The Developer5-5
The Mechanics Involved 5-6

The End-User's Interface. 5-7

'get_reply' and 'readline' Predicates . . . 5-8
Enumerated Askables. 5-9

Summary 5-11

v

VI. Phase Three: Implementing Frames 6-i

The Frame Structure. 6-1

The Frame-Base Language. 6-2

Accessing a Frame Value. 6-4
Adding a Value to a Slot 6-4
Deleting a Value From a Slot 6-5
Adding or Deleting Slots or Frames6-6

Summary. 6-6

VII. Phase Four: Uncertainties 7-1

Uncertainties in Rules and Facts. 7-1

The Search Strategy. 7-3

Altering the Trace 7-5

0VIII. Testing ABC. 8-1

Testing ABC Predicates 8-1

Testing ABC Using Prevritten Knowledge Bases . . 8-3

IX. Conclusions and Recommendations. 9-1

Summary. 9-i

Assessment 9-3

Recommendations. 9-4

Quick Fixes 9-4
Long-Term Enhancements 9-5

Bibliography BIB-i

Appendix A: The Original BC3.PRO Expert System Shell . . . A-i

Appendix B: ABC Source Code. B-i

Appendix C: ABC User's Manual. C-i

Appendix D: ABC Predicates D-1

Appendix E: ABC Predicate Dependencies. E-1

Appendix F: PETS Knowledge Base. F-i

vi

Appendix G: WINE Knowledge Base. G-1

Appendix H: Sample of M.1 Knowledge Base. H-1

Appendix I: Clocksin and Hellish Prolog Predicates I-1

Vita. VITA-i

vi

0i

List of Figures

Figure Page

2-1. Expert System Components 2-3

2-2. Example of a Meta Rule 2-6

0 2-3. A Node in a Frame System 2-7

2-4. General Frame Structure 2-8

2-5. Example of Certainty Factor Scales 2-10

S 2-6. How to Edit a Facet in KEE 2-14

2-7. A Frame Written in KEE 2-16

2-8. Production Rules Within Frames With KEE 2-17

• 2-9. GoldWorks Architecture 2-23

2-10. A Relational Symbolic Representation in Goldworks . . 2-25

2-11. User-Defined Assertions in Goldworks 2-25

• 3-1. An Example of a Fact in ABC 3-2

3-2. An Example of a Fact in ABC With Certain Factor 3-3

3-3. Representations Center Around Rules 3-4

• 3-4. Example of a Rule in ABC 3-5

3-5. Example of Initial Askable in ABC 3-6

3-6. An Example of an ABC Initial-Askable Prompt 3-6

* 3-7. An Example of a Frame in ABC 3-7

4-1. An Example of a Rule in BC3 4-2

4-2. Prolog Equivalent to BC3 Rule 4-2

4-3. An Example of an Askable in BC3 4-6

4-4. BC3's is known /3 Inferencing Steps 4-8

4-5. BC3 Test Times 4-10

* 5-1. Different Ways to Enter OAV Triples 5-5

viii

5-2. The Load Prompt in ABC 5-6

5.3. The ABC get_reply Predicate 5-9

5.4. The ABC readline Predicate 5-10

5.5Prompt From BC3 Askable. 5-10

5.6. Prompt From ABC Askable. 5-11

6.1. ABC's Frame Structure. 6-3

6.2. A Typical ABC Frame. 6-3

7.1. Rules Concerning Calculating Certainties in ABC 7-2

7.2. ABC's calculateCF Predicate. 7-3

7.3. Proper Ordering of Rules in ABC 7-5

8.1. Prolog Predicate Notation8-2

9.1. Recommended Structure of ABC Assertable 9-5

ix

Abstract

This thesis project investigates the creation of an expert system

shell which integrates object-attribute-valuel-OAV) triples with frames

and implements the shell in standard Prolog. Additionally, the

implemented expert system shell uses certainty factors, which allow it to

perform inexact reasoning. The shell, named APIT Backward Chainer, or

ABC, represents its knowledge in facts, rules, and frames. ABC has an

explanation facility that can explain how it derives a solution or why it

asks particular questions when seeking information from the user.

• The approach used in this thesis was to study and expand upon an

educational expert system shell called BC3. BC3, a rule-based shell

developed at AFIT, symbolizes its knowledge with OAV triples. Once the

* decision to expand upon BC3 was made, the thesis project was divided

into four separate but interrelated phases. At the end of each phase, a

working expert system shell was implemented, limited to the functions of

* the current and previous phases. -

Phase one was to study the functions of BC3 in order to determine

its strengths and weaknesses and how best to correct its weaknesses while

* fully utilizing its strengths. During this phase, the reasoning

predicate was fine-tuned for better efficiency and the trace mechanisms

for the "how" trace were modified to use the Prolog database instead of

* the Prolog stack.

Phase two investigated different approaches to creating a user

interface for an expert system shell with the constraint of having to

* implement it in standard Prolog. In this phase, the requirement to enter

x

data in the form of a Prolog structure was eliminated. Additionally,

questions with unique queries prompted the user to select a number from

an enumerated list of valid answers. A command line scheme similar to

Teknowledge's M.1 was also implemented. The use of the command line

gives the user much more freedom and flexibility.

Phase three investigated current commercial expert system shells to

determine how frames and uncertainties appeared to be operated from the

perspective of the user. The introduction of frames, including the

possibility of demon procedures, into the expert system shell was then

completed.

Phase four involved investigating inexact reasoning and introducing

this capability into ABC. The inference engine was adapted to allow

certainty factors to be used in the knowledge base's facts and rules.

This adaptation of the inference engine allowed multiple solutions with

differing certainty factors for a single goal.

The behavior of ABC is similar to M.1 but lacks the latter's

efficiency. The wine advisor written by Teknowledge to run on M.1 was

adapted to run on ABC to show its capability.

xi

An Educational Expert System Shell

Integrating

Object-Attribute-Value Triples and Frames

I. Introduction

This chapter introduces background on the need for an educational

expert system shell to be developed at AFIT. It also points out some of

the problem areas which exist in the educational expert system shell

currently in use at AFIT, assumptions that influenced the development of

the new expert system shell, and the scope of the development project.

The chapter concludes by detailing the methodology that was used in the

design and development of the AFIT Backward Chainer expert system shell

and a general overview of the work which vent into the thesis.

Background

Currently, the Electrical and Computer Engineering department at

AFIT is teaching an introductory course in artificial intelligence (AI)

in which the structure and use of expert system shells are studied.

Traditionally, for most of the students in this course, this is the

first exposure to AI, AI languages, and expert system shells. The AI

language used in the course is the Clocksin and Mellish (5:111-137)

dialect of Prolog (Programming in Logic). Prolog is nonprocedural; it is

therefore difficult for students new to its structure to understand its

capability without the aid of good examples.

1-1

Last year when this course was last taught, engineering students

were shown an expert system shell written in Clocksin and Mellish Prolog

and were tasked to use it in developing small expert systems. The

shell, named BC3, was developed at AFIT for pedagogical purposes.

BC3 uses Object-Attribute-Value (OAV) triples to represent its

knowledge in "IF A AND B, THEN C" production rules, where A, B, and C are

OAV triples. OAV triples were first used on a large scale in the mid-

1970s in a Stanford University project called MYCIN (4:8,23), an expert

system to aid physicians in the diagnosis of blood diseases (4:13-18).

MYCIN has two important features which make it a useful reference

source for this project. First, MYCIN uses OAV triples in lieu of other

known knowledge representations. Secondly, since many of the facts and

rules in MYCIN are based upon historic data and physicians' experiences,

certainty factors are used to represent the relative confidence of these

facts and rules (4:3-8).

One of the strong points of BC3 is its ability to explain to its

user how a particular solution was reached via its "how" trace. In

expert systems such as MYCIN, such information is indispensable. In

addition to BC3's "how" trace facility, BC3 also allows its user to query

the expert system shell for why it needs supplementary information

whenever prompted for it.

1-2

0

Problems Vith BC3

Problems with the current version of BC3 include the following:

1. The user interface in BC3 requires the student who is developing

the expert system to input OAV triples into his/her knowledge-base in the

form of Prolog lists. This includes all triples entered as parts of

facts, rules, or other structures of knowledge. The need for such lists

detracts from the understandability, and therefore maintainability, of

the knowledge base.

Additionall>, when prompted with a query, the user interface in BC3

requires the end user to reply with an answer meeting Prolog's term-

syntax. This restricts flexibility and ease of use.

2. The knowledge representation in BC3 is limited to facts and

rules. This limitation restricts the expert systems which can be

0 developed efficiently with this shell to those whose problem domain can

be easily represented by this structure. In problem domains which can be

represented by hierarchical organization with inheritance of values,

0 knowledge structures known as frames are more natural and efficient

(22:74-75, 11:123). The lack of frame-based knowledge representation in

BC3 prevents its efficient use in such hierarchical problem-domains.

0 Additionally, the lack of a frame-based knowledge representation in BC3

detracts from its primary function as a learning tool. Frames are a very

common method of representing knowledge in today's expert systems and a

* frame-based language incorporated into BC3 would greatly enhance its

effectiveness as a teaching aid.

1-3

0

3. The knowledge representation in BC3 does not account for facts

0 or production rules having varying degrees of confidence or

uncertainties. The lack of this ability to associate certainty factors

to the facts and rules in the knovledge base restricts the use of BC3 to

* problem domains where a fact or rule is either true 100 percent of the

time, or is not true at all. This is a serious limitation since there

are many problem domains in which facts are not just true or false but

0 have truth-values at various levels in-between. Again, as an

instructional tool for graduate students, BC3 does not provide the

utility necessary to illustrate this basic concept which is used in many

of the expert system shells currently being employed by the AI

community.

0 Assumptions

The underlying assumption used in designing and developing the ABC

expert system shell was that it would be used primarily as an education

0 tool. Like the BC3 shell, ABC is intended to be functional, well

documented, with clarity as its primary objective; efficiency is a

secondary objective.

0 Furthermore, it was assumed that ABC would not be an effort started

from beginning, but an effort to enhance the existing BC3 in order to add

the additional features mentioned later. It was further assumed that all

* the additional features were to be implemented using standard Clocksin

and Mellish Prolog.

A literature search was performed to look at current commercial

0 expert system shells to see how the knowledge engineer perceives the

1-4

0

interaction between rules, frames, and uncertain knowledge. It was

assumed that those concepts used in these commercial shells which were

beneficial and within the scope of this thesis were to be emulated.

Scope

The ABC expert system shell is a greatly enhanced and modified

version of the current educational shell, BC3. ABC's function is to

extend the knowledge representation currently found in BC3 to include

frames and uncertainties and, in addition, to add a better user

interface.

The user interface was designed and implemented to allow its users

to express OAV triples in a format more natural than the Prolog list. It

also made the answering of queries more natural by eliminating the need

for any of the user's replies to be in Prolog's term-syntax format.

A user's manual and sample knowledge bases are included in the

appendices to aid in the understanding, development, and maintenance of

5 ABC knowledge bases.

Methodolog

Since the design and development of ABC was accomplished using

Prolog, a language excellently suited for rapid prototyping, the

methodology this thesis pursued was a modified version of the rapid

prototyping paradigm (19:150). Rapid prototyping is the development of

executable code very quickly. Prolog supports this methodology because

its structure, which will be covered in more detail in Chapter II,

1-5

allows predicates to be developed and tested quickly using top-down

• development techniques. Additionally, Prolog's inferencing mechanism

also supports top-down programming. Prolog's inference engine "starts

with the goal and applies a top down, left-to-right evaluation strategy"

(21:15, 109-111, 121).

The traditional rapid prototyping paradigm has six steps (19:149-

150). The six steps of the prototyping paradigm and how each of these

* steps will be approached are enumerated below.

1. Establish the Need - The first step is to determine if rapid

prototyping is appropriate. For this thesis, this determination was

based primarily upon the language being used.

2. Dividing the Task Into Subtasks - The project must be divided

into logical divisions and a subset of requirements for one or more of

these divisions generated. Traditional requirement analysis methods can

usually be applied. During this step, ABC was broken down into four

divisions corresponding to the three problem areas plus an initial area.

These divisions were: i) improving the readability and efficiency of the

expert system shell BC3 as it originally functioned, ii) adding a better

user interface to BC3, iii) adding a frame structure and frame language

to BC3 along with modifying BC3's inference mechanism to interact with

frames, and finally, iv) modifying the code to add the ability to

address uncertainties in rules and facts.

3. Design Specification - Step three consists of getting the

subset of requirements created in step two converted to an "abbreviated"

design specification. For this thesis effort, the design specification

was not formally created. Instead, the user's manual for the expert

1-6

system shell along with two sample knowledge bases were created. The

ABC expert system shell was tested in the final phase of testing using

these two knowledge bases. This set of tests was considered sufficient

to confirm that the program meets the requirements of the user's manual.

Additionally, an index of ABC's predicates and their dependencies is

provided as a supplement in the appendices.

4. Create, Test and Refine Software - Step four is the point at

which software is actually written. The iterative steps "create, test

and refine" (18:150) are applied. Others have defined the last part of

step four as a cycle of its own called the "Run-Debug-Edit cycle"

(16:96). During each iteration of this step, the results were thoroughly

tested for logic and programming errors. This testing was carried out

using the Prolog-1 and Arity Prolog interpreters.

5. Getting User Input - Step five consists of showing the

prototype to the user for either approval or for suggestions on

improvement. For this thesis effort, the thesis sponsor was assumed to

be the user. During each iteration of this step, the expert system shell

was demonstrated to the thesis sponsor for tentative acceptance for that

particular step. During each phase of the project which corresponds to

one iteration of this step, it was necessary to go back to previous

phases and make changes.

6. Iteration of Steps 4 and 5 - Step six calls for an expansion

on the requirements by adding another division, referred to in step two,

and repeating steps four and five until all the requirements are

covered. Since all the requirements were defined ahead of time in the

user's manual (Appendix C), with an occasional minor modification when

1-7

necessary, this step required that steps four and five be reapplied to

the next phase of the expert system shell until all the phases were

completed.

Overviev

The following chapters of this thesis will allow the reader to

familiarize himself with basic definitions and concepts surrounding

expert system shells in general, and the work which went into the ABC

expert system shell specifically. Chapter II provides the background

information which includes definitions. Chapter III provides a brief

functional description of ABC and explains its basic knowledge

representations. Chapters IV through VII give detailed information

concerning design, coding, and then outlines the results of adding

frames, certainty factors, and a better user interface to BC3. Chapter

VIII deals with test results when ABC ran the sample knowledge bases in

appendices F and G. Chapter IX sums up the thesis with conclusions and

recommendations. The casual reader may wish to read the functional

description of ABC (Chapter III) and then proceed on to the final

chapter on conclusions and recommendations.

1

1-8

S

II. Background

,hiis chapter summarizes of the current knowledge relevant to this

thesis. The chapter starts with definitions of terms so that any

ambiguities of terminology can be reduced if not eliminated. A brief

discussion of the Prolog language follows. Finally, this chapter covers

some of the current commercial expert system shells available today with

special emphasis on how the user perceives the structure of the knowledge

representation along with how uncertainties are handled.

Definitions

This section provides a brief explanation of the major technical

terms used throughout this thesis. Expert systems, knowledge

representation, and uncertainties are among the topics which are

discussed.

Artificial Intelligence. There are many definitions of artificial

intelligence (AI) in the literature today. There are those who believe

that the ultimate goal of AI is to develop "inteligent" machines which

can understand and reason like humans (2:3). However, this thesis will

accept the fundamental goal of AI to be to develop computer programs "to

think in a limited way and to perform reasoning operations that a human

might ordinarily do" (8:6). Throughout this thesis, many methodologies

and techniques concerning search, pattern matching, and knowledge

representation will be covered. These methodologies and techniques are

referred to as Al methodologies and Al techniques (16:5).

2-1

Expert Systems. Expert systems are computer programs which stores

declarative and procedural knowledge in a manner that allows it to solve

problems in a narrow domain by reasoning with its knowledge, querying its

user, or acquiring data from sensors (16:53-54). The primary distinction

between expert systems and algorithmic systems is that expert systems

encapsulate "rules of thumb" or "heuristics." Expert Systems are usually

employed trying to solve very "difficult and poorly understood" (22:17)

problems; thus they make use of heuristics to simplify their task. Being

able to use heuristics efficiently makes an expert system more practical

than a conventional algorithmic approach. An example of a problem where

heuristics simplifies the solving process would be the game of chess.

The complexity of coding chess in a traditional algorithmic manner would

make the execution of the program using today's computer resources

unfeasible.

Generally, expert systems have three major components: a knowledge

base, one or more inference engines, and a user interface (16:55-58).

The way each of these components are usually structured is illustrated in

Figure 2-1.

Knowledge Base. The knowledge base is where all the domain specific

knowledge is located (1:19). This knowledge is usually both declarative

and procedural. Declarative knowledge is known facts concerning some

object or event. A conventional database uses declarative knowledge.

Procedural knowledge, on the other hand, is what gives expert systems its

power to reason. Procedural knowledge provides "information about

2-2

Knowledge Base

Dynamic User

Static Working End User
Memory Interface

Inference Engine

Figure 2-1: Expert System Components (16:55)

courses of action" (16:56). Rules of thumb or heuristics are usually a

type of procedural knowledge (8:4). In the cnmputer community,

declarative knowledge is usually considered information. On the other

hand, the useful combination of declarative knowledge and procedural

0 knowledge is referred to as real knowledge. The primary object of expert

systems can thus be summed up as trying to represent "knowledge rather

than information in a computer" (8:5).

S The structure of the knowledge base is often called its

representation. The two most common knowledge base representations are

production rules and frames; each will be explained later in this

• chapter. The manner in which information is represented in the knowledge

base ultimately determines both the extent of domain knowledge which can

be represented, and to a large degree, the difficulty of developing the

S knowledge base and the efficiency of it once it is developed. There are

strong beliefs in the AI community concerning knowledge representations

and the role these representations play in AI applications in the

future. There are experts who believe "knowledge representation is the

2-3

central problem of AI" (1:19). One of the central themes "in the field

of expert systems is largely devoted to finding better ways to represent

knowledge in a computer" (8:6).

Some expert systems utilize more than one type of knowledge

representation. For example, Gold~orks provides both production-rule

and frame-based representations. Multiple knowledge representations

provide greater flexibility and may extend the level of knowledge which

may be encapsulated into the knowledge base (11:123).

Within each knowledge base representation -- facts, rules, or

frames -- the knowledge is represented symbolically (8:9). Some

convention of symbolic representation must be utilized in order that the

AI techniques of search and pattern-matching, present in the inferencing

mechanism, can make use of the knowledge residing in the knowledge base

(8:9-10).

In some expert systems, the knowledge base is divided into two

parts: the static knowledge, which remains essentially the same

throughout each consultation, and the dynamic knowledge, consisting of

knowledge learned during a consultation. The dynamic knowledge, more

commonly called "working memory", can usually be stored to disk along

with the static knowledge thus allowing future consultations the ability

to take advantage of knowledge learned in past consultations (11:325).

Production Rules. Production rules are the most common type of

knowledge representation used in expert systems. Production rules of the

type, IF this AND that, THEN conclusion, have been around since 650 B.C.

as a way to govern "everyday affairs" (4:12). They were first proposed

in 1943 by Post as a general computational mechanism (4:20). They were

2-4

first used on a large scale expert system in the early 1970s. This

expert system, called MYCIN, originally began as Edward H. Shortliffe's

Ph.D. dissertation at Stanford University, which he finished in 1974

(4:xvii). MYCIN used the symbolic representation of Object-Attribute-

Value (OAV) triples to represent its knowledge, with an additional

argument to represent uncertainty (4:6-7). More will be said about OAV

triples later. The domain knowledge was stripped from MYCIN and an

expert system shell was formed called EMYCIN (4:xvii). M.1, an expert

system shell from Teknowledge, was modeled around EMYCIN (11:303).

Production rules are sometimes just called "rules" or "productions."

The format of production rules has two parts: a premise and a conclusion.

The premise and conclusion are sometimes referred to as the antecedent

and consequent respectively. If the premise of a production can be

proven true, then the conclusion is either accepted to be true or it

causes some action to occur. It is the ease of representing heuristic

knowledge in production rules which makes them the most popular

representation in expert systems today (8:74-75).

Each production rule usually represents only a small portion of the

knowledge needed in an expert system. For this reason, it is not

unusual to have expert systems with hundreds or even thousands of rules

(8:75).

Maintenance of production rules in expert systems is also an

additional reason why rules are so popular. Besides being easy to create

and modify, rules are relatively easy to maintain. This is increasingly

important in large expert systems where the domain knowledge can change

over short periods of time (8:75).

2-5

In some expert systems, there may be production rules which do not

represent domain knowledge explicitly but instead provide knowledge about

other rules. These types of production rules, usually called meta-rules,

are rules which affect the control of the expert system (16:56). An

example of a meta-rule, taken from MYCIN, is shown in Figure 2-2.

IF 1) there are rules which do not mention the current
goal in their premise

2) there are rules which mention the current goal in
their premise

THEN it is definite that the former should be done
before the latter.

Figure 2-2: Example of a Meta Rule

Frames. Frames, like production rules, are a type of knowledge

represvntation. The frame representation was first proposed by Marvin

Minsky in 1975 as a way of representing and organizing "concepts and

situations" (22:73). Frames can also be used for organizing control

information. KEE, a very successful expert system shell, uses frames to

organize control information and to organize its rules (12:1).

As a way to organize real-world concepts and situations, objects or

ideas can be represented by a frame. Each frame can in turn have one or

more different attributes, sometimes called slots, with each attribute

having one or more values. Figure 2-3 shows the general structure of

this type of frame (22:73-74).

2-6

Concept

Slot 1 Value 1

Slot 2 Value 2

Slot 3 Value 3

Figure 2-3: A Node in a Frame System (22:75)

One powerful feature of the frame representation is its ability to

execute and run procedures, called demons, under some preset control

strategy whenever a slot changes values or is called. Typical demons

are "if-added", "if-removed", and "if-needed" (22:74-77). These demons

are usually associated with slot facets such as value, default, if-

needed, and if-added, which aid in the control strategy. Each slot can

have one or more of these facets, allowing each slot to have one or more

demons (8:82-85).

One of the more important features of a frame is its ability to be

linked with other frames in some hierarchical fashion so that attributes

and values are communicated naturally through a somewhat invisible

control scheme. Usually, top level frames are general concepts or

classes of objects and lover level frames are specific concepts or

objects (22:73-74), as illustrated in the structure in Figure 2-4.

2-7

REPORT

isa isa

REPORT REPORT

isa

SPROGRESS

REPORT #15

Figure 2-4: General Frame Structure (22:74)

Object-Attribute-Value Triples. An Object-Attribute-Value (OAV)

triple is a structure designed to represent knowledge. This structure

has three components: the object, the object's attribute, and the

attribute's value. Thus information about an object, its attribute, and

the value of the attribute can be arranged in a standardized structure

enabling systematic and uniform processing.

Uncertainties.

There are generally three accepted methods for dealing with

* uncertainties in expert systems today: certainty factors, quantifiers,

and probabilistic confidence factors (15:153). The use of uncertainties

in knowledge representations allows for knowledge with various levels of

* confidence or truthfulness to be represented and manipulated in some

2-8

predesigned logical scheme. This capability is needed in many problem

domains where the values of the knowledge lie somewhere between true and

false. An example of a domain where uncertainties exist is medicine.

HYCIN used certainty factors to deal with uncertainties in its medical

* diagnosis.

Certainty Factors. In most rule-based expert systems, the

uncertainty of the knowledge is represented using certainty factors

(8:79). The certainty factor (CF) is a numerical representation of the

relative confidence that a fact or rule is indeed true or valid. In

HYCIN, as with S.1, the certainty factors range from negative one to

positive one. The negative-one CF represents absolute certainty that the

knowledge is false. A positive-one CF, on the other hand, represents

absolute certainty that the knowledge as presented is known to be true.

A zero CF implies that nothing is known concerning the knowledge, i.e.,

that it is just as likely to be false as to be true (8:24,76-77).

The expert system shell M.1 uses a CF between zero and one-hundred.

• In this shell, zero represents that the knowledge is either unknown or

that it is false. A CF of 100 represents absolute certainty that the

knowledge is known to be true. M.1 interprets knowledge with a CF of

0 less than 20 to be of questionable value and thus such knowledge is not

used when it is needed as the condition of a rule (14:4-10). Both types

of certainty factor scales are illustrated in Figure 2-5.

Quantifiers. English-like quantifiers, words or phrases, have a

weighted representation. Common quantifiers are "some", "sure", "maybe",

"most", and "always." Quantifiers allow expert systems with a natural

2-9

language front-end to parse the quantifier, equate it to a numerical

representation internally, and when the answer is returned with its new

numerical measure of confidence, it converts the new numerical measure

back to a quantifier. Using quantifiers in expert systems is based upon

"fuzzy logic" (15:153).

1.0 True +1.0 True

Partially
+0.5 True

0.5 Half True
0.0 Unknown

-0.5 Partially
0.0 False False

-1.0 False

Figure 2-5: Example of Certainty Factor Scales (8:77)

Probabilistic Confidence Factors. The use of probabilistic

confidence factors, based upon Bayesian probability, is the most math-

* intensive approach to dealing with uncertainty. A probabilistic

confidence factor is a percentage of accuracy as opposed to a relative

strength, which was the case with CF and fuzzy logic (15:153). The

* domain for the use of a Bayesian-type confidence representation is very

narrow and several constraints must be met to get accurate results

(20:245).

2-10

Inference Mechanisms and Methods

The inference engine is where "the process of creating explicit

representations of knowledge from implicit ones" takes place (20:6). It

is in the inference engine where heuristics, taken from the knowledge

base, decide what path will be taken to find a solution. When external

heuristics are not provided, the inferencing is very simple. Certainty

factors are one type of external heuristics which can make the "decision-

making" of the inference engine much more complex (11:245).

There are two general categories of inference engines: simple and

complex. A simple inference engine is usually either forward chaining or

backward chaining with a basic justification and search strategy. A

complex in~erence engine usually uses both forward and backward

inferencing or a complex justification or search technique (11:155-156).

The basic elements in an inference engine, all of which are not required,

are reviewed below.

Forvard Chainin . Forward chaining inferencing is usually an

iterative process of looking at each rule to see if its premise can match

known facts. If so, the rule's conclusion is added to the list of known

facts. This process continues until no rules have premises which can

match known facts. Forward chaining can produce a large number of new

facts; thus it is usually employed when a number of answers or solutions

are needed from a fixed set of facts and rules (11:155-159).

Backvard ChainIn. In backward chaining inferencing, a goal is

known but what the inferencing scheme tries to determine is if that goal

can be deduced from the facts and rules within the knowledge base. This

2-11

0

process usually involves entering a goal into the knowledge base vhich

matches one or more rule conclusions. If a rule conclusion is matched,

the premises of that rule are made subgoals themselves. If all the

premise subgoals are proven, this then proves that the original goal can

be derived from the knovledge base. Throughout this process, variables

become instantiated and a solution consisting of these instantiated

variables is usually presented to the user.

*If any of the premise subgoals fails, the inference engine goes to

the next rule vhose conclusion matches the queried goal. If no

resolution can be made, then the original goal cannot be derived by the

* knovledge in the knovledge base (11:160-163). It is important to note

that failure of resolution does not imply that the goal is false but

merely that it can not be determined based on the facts and rules in the

* knowledge base.

Other Elements of Inferencing. Other common elements of inferencing

are justification and search. There are three basic types of search

mechanisms: depth-first, breadth-first, and best-first (11:155-159).

Other search mechanisms can be formed from the more primitive ones.

Search mechanisms vary from simple depth-first or breadth-first

searches to complex best-first type searches. Because of the

"combinatorial explosion" of possible paths, some technique is required

to reduce the number of paths only to those paths vhich look the most

promising. This is done in games such as chess. This technique is

sometimes referred to as pruning and can be accomplished using the more

complex heuristic search mechanisms such as best-first (8:86-93).

2-12

Justification is a trace-type mechanism which records the track the

inference engine takes as it reasons through the knowledge base (11:164).

This is important in many expert systems where the question of hov an

answer is derived is as important as the answer itself (4:64).

Prolog

Prolog was originally developed under the guidance of a Frenchman

named Alain Colmerauer around 1970. Prolog was the first language

specifically designed to allow a programmer to express his programs in

logic as opposed to more "conventional programming constructs about what

the machine should do when" (5:233).

Prolog is a declarative language as opposed to a procedural

language such as Fortran, Ada, or Pascal. In Prolog, the programmer is

chiefly concerned with expressing his problem in logical expressions,

(facts and rules), and not with the minute details of how things are

accomplished (3:40-42). Thus, the declarative nature of Prolog makes it

* very suitable for expert systems and expert system shells (15:127).

Commercial Expert Systems Shells

This section provides a brief synopsis of a few of the commercial

expert system shells, with particular attention to how these shells allow

their users to write knowledge structures in the form of rules and/or

frames, and how these structures deal with uncertain knowledge. The four

expert system shells evaluated are KEE, M.1, Personal Consultant Plus,

and GoldWorks.

2-13

KE. KEE is an acronym for Knowledge Engineering Environment and is

a trademark of Intellicorp Inc. KEE is an expert system "environment"

written in Common Lisp. It requires the use of a Common Lisp interpreter

in order to operate. The user is allowed to program using the KEE syntax

which works inside of its environment and utilizes windows to display

frame structures or relationships between frames in a graphical fashion.

The KEE programmer may also input certain instructions using user-defined

Common Lisp code which adds flexibility to the predefined KEE

environment.

There are eleven types of windows the user can access. Each type

can be accessed using the standard windowing interface or by a user-

defined interface written in Common Lisp. For example, the editor

window is used to "edit units, slots, slot values, facet values, rules,

and ruleclasses" (12:1-38). Such a window is shown in Figure 2-6.

(edit-value-of-facet
'(goat farmdil) ; unit-or-ref

* 'location ; slot-or-ref
'own ; slot-type
'hide.me ; facet
'take-goat-to-shorel-9) ; world [12:1-391

Figure 2-6: How to Edit a Facet in KEE

The KEE frame structure is a superset of the structure Dr. Minsky

* introduced. KEE not only uses frames for controlling the reasoning

components of its environment, but uses frames to represent "structural

representation issues" as well (7:907). The main components of KEE's

2-14

frame structure are class, inheritance, MemberOf link, slots, facets,

values, and procedural attachments.

Each frame has one or more slots with each slot having one or more

values. Classes, such as value classes, limit the value which any slot

may acquire to preauthorized values. Closely related are the facets

called CardinalityMin and CardinalityMax which are only two of several

facets which KEE uses. These two facets limit the number of different

values which a slot may acquire to a number between or including these

two values.

Inheritance in KEE is made possible by the use of either MemberOf

links or subclass links. Each frame can have one or more MemberOf links

to other class frames and each class frame can have one or more subclass

links to other class frames.

A procedural attachment "enables behavioral models of objects and

expertise in an application domain to be built" (7:909). KEE has two

types of procedural attachments: methods and active values. Messages can

be sent to frames which have a "message-responder slot." The value of

these message-responder slots become what KEE calls a method. Active

values are very similar to demons. Active values fire off one or more

rules if specific changes in the frame occur.

A typical frame written in KEE syntax is listed in Figure 2-7.

Each rule in KEE is in the form of a frame. The frame language is

fully accessible to the programmer. Additionally, a predicate logic

language is also available to supplement the predicates already available

in Common Lisp. Predicates are used in the development of production

rules. An example of a predicate in KEE's predicate logic language is

0
2-15

IN.CLASS, which has two arguments. The predicate is true if the first

argument is a member of the class described by the second argument. An

example of how production rules are written using KEE's predicate logic

language is shown in Figure 2-8.

Unit: TRUCKS in knowledge base TRANSPORTATION
Superclasses: VEHICLE
Subclasses: BIG.NON.RED.TRUCKS, HUGE.GREY.TRUCKS

* Member: CLASSES.OF.PHYSICAL.OBJECTS

MemberSlot: DIAGNOSE from TRUCKS
Inheritance: METHOD
ValueClass: METHODS
Cardinality.Min: 1
Cardinality.Max: 1

* Comment: "A method for diagnosing electrical faults"
Values: TRUCK.DIAGNOSIS.FUNCTION

MemberSlot: ELECTRICAL.FAULTS from TRUCKS
Comment: "Faults found by the DIAGNOSIS method"
Values: Unknown

MemberSlot: LOCATION from PHYSICAL.OBJECTS
Cardinality.Min: 1
Cardinality.Max: 1
Values: Unknown
ActiveValues: UPDATE.LOCATION

Figure 2-7: A Frame Written in KEE (7:911)

2-16

Unit: BIG.NON.RED.TRUCKS.RULE in knowledge base TRANSPORTATION
Member: TRUCK.CLASSIFICATION.RULES

OwnSlot: ACTION from RULES
Inheritance: UNION
Values: Unknown

OwnSlot: ASSERTION from BIG.NON.RED.TRUCKS.RULE
Inheritance: UNION
ActiveValues: WFFINDEX
Values: lWff:(?X IS IN CLASS BIG.NON.RED.TRUCKS)

OwnSlot: EXTERNAL.FORM from BIG.NON.RED.TRUCKS.RULE
Inheritance: SAME
ValueClass: LIST
ActiveValues: RULEPARSE
Values: (IF ((?X IS IN CLASS TRUCKS)

AND
(GREATERP (THE WEIGHT OF ?X)

10000)
AND
(?X HAS AT LEAST 10 WHEELS)
AND
(NOT (THE COLOR OF ?X IS RED)))
THEN
(?X IS IN CLASS BIG.NON.RED.TRUCKS))

OwnSlot: PARSE from RULES
Inheritance: METHOD
ValueClass: METHODS
Values: DEFAULT.RULE.PARSER

OwnSlot: PREMISE from BIG.NON.RED.TRUCKS.RULE
Inheritance: UNION
ActiveValues: WFFINDEX

* Values: IWff:(?X IS IN CLASS TRUCKS)
IWff:(THE WEIGHT OF ?X IS ?VAR29)
Wff:(GREATERP ?VAR29 10000)
lWff:(?X HAS AT LEAST 10 WHEELS)
IWff:(NOT (THE COLOR OF ?X IS RED))

* Figure 2-8: Production Rules Within Frames With KEE (7:913)

2-17

0

K.1. M.1 can be considered both an expert system shell and a logic

programming language. The first version of M.1 was written in Prolog and

released in 1984 and has sold over 4000 copies (10:1). Its creator,

Teknowledge Inc., has released a second version which was rewritten in

the C language.

M.1 uses production rules and does not have the capability of frame

representation. It does, on the other hand, allow for uncertain

knowledge by its support of certainty factors. M.1 has three "forms" of

representation; facts, rules, and meta facts (14:1-12). Version One of

M.1 used predefined Prolog structures to represent facts and rules. M.1

defined Prolog operators such as "default", "=", and "cf" which allowed

facts to be written such as "the default color = red cf 50", where

"color" is the attribute and "red" is its value with a certainty factor

of 50 percent. BC3 uses Prolog to represent its facts and rules in much

the same way. The largest difference between M.1 and BC3 is that M.1

used attribute-value pairs instead of object-attribute-value triples.

Meta facts in M.1 are facts "that M.1 uses to find another fact."

Meta facts are facts which aid the inference engine in its search to find

a solution to its goals (14:3-9). The 'askable' predicate Sn BC3 which

allows the user to be queried for a confirmation or a value can be

considered a meta fact of sorts.

The inference engine in M.A is driven by three components: modus

ponens, instantiation, and certainty factors (14:3-11). Modus ponens and

instantiation are inferencing mechanisms derived directly from Prolog.

Certainty factors (CF) in M.1 allow it to "reach conclusions using ...

inexact information" (14:1-7).

2-18

Certainty factors in M.1 can be located in facts as well as rules.

The certainty factor in an M.1 fact implies that the fact is known with a

relative strength corresponding to the numerical weight of its certainty

factor. M.1 uses the range from 0, signifying no certainty at all, to

100, signifying absolute certainty, to weight the certainty of its facts

and rules (14:3-14).

Certainty factors in M.1 rules are more complex compared to their

role in facts. When discussing certainty factors within rules, both the

manner in which a particular rule obtains its final certainty factor and

the manner in which certainty factors from two or more rules are combined

are important.

The final certainty factor of a rule is normally the product of the

certainty factor of the overall rule itself and the lowest certainty

factor of the individual "if" clauses which make up the rule. Choosing

the lowest certainty factor of the "if" clauses is analogous to rating

the strength of a chain based upon its weakest link. This method of

calculating the overall certainty factor of a rule applies only when the

rule is exclusively made up of conjunctive "if" clauses (14:3-15, 3-16).

If the rule's clauses are disjunctive, "if A or B then C", then each

disjunctive part of the rule is considered a separate rule. The final

certainty factor for rules with disjunctive clauses cannot be obtained

using the method described previously for rules having only conjunctive

clauses. Multiple rules with the same conclusion, or rules with

disjunctive clauses, reinforce each other. This reinforcement of two or

more rules causes an assertion to be created in M.1's cache, temporary

2-19

working memory, with an overall certainty factor greater than the two or

more certainty factors from which it was composed.

The method used in M.1 to calculate the final certainty factor of

two or more rules with the same conclusion is to solve each of the rules

independently and combine their certainty factors -sing equation (1)

(14:3-17).

CF1 + (100 - CF1)/100 * CF2 (1)

Two example M.1 knowledge bases are attached in Appendix B. These

knowledge bases help show the structure of M.1 from the programmer's

perspective. They also show how variables must be represented and how

operators may be optionally defined (indicating that M.1 relies on the

Prolog structure substantially).

Personal Consultant Plus. Personal Consultant Plus (PC Plus) is an

expert system shell developed by Texas Instruments (TI) which is written

in their implementation of Lisp, PC Scheme. In order for PC Plus to run,

PC Scheme must be installed and loaded into the computer's memory (18:2-

2).

*PC Plus supports three types of knowledge structures: frames,

parameters, and rules (18:3-1). The underlying structure in PC Plus is

the frame. Rules and parameters are just two of the three major parts of

*a frame. The other major part of a frame is called a property. Frames

are used to store the knowledge about a very narrow and specific problem

domain. Each frame has its own facts, its own rules and its own

* properties. Parameters in PC Plus are basically facts. There are five

2-20

0

basic frame properties which the user may define: goals, promptever,

translation, initialdata, and displayresults. Properties are used "to

describe the features of a frame and to control various aspects of the

consultation" (18:3-3,3-4).

Since the function of a frame in PC Plus is to store knowledge about

a problem domain, the primary task for a frame is to come up with a

solution to one or more goals. Thus, each frame has one or more

parameters which make up the goal's property. Once these parameters are

known, the frame's solution is known.

PC Plus frames use hierarchy to organize their knowledge. Each

frame may be a parent frame, a child frame, or both. Parameters and

rules from the parent frames are inherited by the child frames. The

highest frame is called the root frame (18:3-5).

Uncertainties in PC Plus are also supported in the form of certainty

factors (CF). CF may be in the range of -100 to 100 where -100

represents a parameter or a rule which is absolutely false. In contrast,

a CF of 100 represents a parameter or a rule which is absolutely true. A

CF of zero indicates that the parameter or rule neither supports or

denies its assertion. When the certainty of a fact is totally unknown,

it may be represented with a CF of zero (18:3-7). This CF scheme is

similar to the one used with MYCIN.

GoldVorks. GoldWorks, an expert system shell from Gold Hill

* Computers Inc., is written in Gold Hill's Common Lisp. GoldWorks

provides two main interfaces: the menu interface and the developer's

interface.

2-21

The menu interface is a convenient way for the novice to interact

with the many features which GoldWorks provides. The menu interface

allows the developer or user to load and save files, enter a tutorial,

enter the editor called GMACS, enter the DOS environment, define frames

or rules, browse through the frame structure, and of course exit

GoldWorks. It will not, however, provide all the flexibility which the

developer's interface has.

The developer's interface allows access to the underlying Lisp

interpreter. This allows the developer to write his own assertions,

rules, or procedures in Lisp, adding both to the power and flexibility of

the expert systems which can be developed using GoldWorks. Additionally,

the developer's interface allows access to a screen toolkit allowing

customized screens to be generated. For business applications, the

developer's interface also allows access to Lotus 1-2-3 and dBase III+

files. The user interfaces are illustrated within the architecture of

GoldWorks in Figure 2-9.

GoldWorks has three types of knowledge representations: Frames,

Rules, and assertions. A frame must be created before instances of the

frames can be generated; therefore, a frame is created with all the slots

that are needed but with no values. There are nine types of facets
0

which each slot may have: print name, documentation string, explanation

string, constraint, multivalued, default, certainty, when-modified, and

user. Each of these facets is defined.

2

0

2-22

L Menu Interface

External
Knowledge Representation Interfaces

Developer's System
Interface

Lotus
Frames Rules Assertions 1-2-3

0 _dBase

Inference Engine C

Networks

* Lisp Programming Environment

Figure 2-9: GoldWorks Architecture (13:71)

The print name and documentation string are administrative facets

which describe the slot. The explanation string adds "text to the end of

the system-generated explanation for slot-value assertions associated

with the slot" (13:70). The constraint facet limits the value which a

slot may acquire. The multivalued facet is either yes or no, indicating

whether the slot has multiple values. The default facet simply provides

a default value for instances of the frame which have no value for that

particular slot. The certainty facet provides a default certainty factor

to the slot. The when-modified facet is a default list of Lisp functions

2-23

which will be evaluated whenever the slot is modified. The user facet's

function is defined by the developer.

When an instantiation of a frame is created, the slots along with

facets of the uninstantiated frame are used. The instantiated frame will

hold its values in its slots.

Rules in GoldWorks are used to infer implicit facts from explicit

assertions. There are three main types of rules in GoldWorks: forward-

chaining, backward-chaining, and bidirectional. Rules have eight facets:

print name, document string, explanation string, direction, sponsor,

priority, certainty factor, and dependency value. Each of these facets

is defined below.
S

The print name, document string, explanation string, and certainty

factor have the same purpose as the facets with the same name covered

previously for frames. The direction facet simply signifies which of the

three types of rules it is. The sponsor facet allows the grouping

together of rules which may perform some function. The priority facet is

an integer between -1000 and 1000 which prioritizes rules in the order

they are to fire. The dependency value facet is either true or nil. If

the dependency value is true, this

tells the system to create a justification (why the rule is in
*the knowledge base) when the rule fires. If assertions that

match a rule (causing it to fire) are retracted, the assertions
that resulted from firing that rule also will be retracted
[13:73).

Assertions in GoldWorks are basically facts. There are two general

types of assertions: structured and unstructured. Structured assertions

are automatically entered in by GoldWorks whenever frames or instances of

frames are created. Unstructured assertions are again divided into three

2-24

different types: regular assertions, relational assertions, and

functional assertions. Regular assertions are just known facts entered

into the knowledge base. Relational and functional assertions allow the

developer to define a symbolic representation around an object and enter

facts based upon this representation. For example, if the developer

defines a relational symbolic representation around the object

floppydisks by the code in Figure 2-10, he can then make the assertions

in Figure 2-11.

0

(define-relation floppydisk
(:relation-type: assertion)

* (size sided density bytes))

Figure 2-10: A Relational Symbolic Representation in GoldWorks

(floppydisk 5.25 1 normal 10OK)
(floppy_disk 5.25 2 double 360K)

* (floppy_disk 5.25 2 quad 1.2H)
(floppydisk 3.5 2 double 720K)
(floppydisk 3.5 2 quad 1.4M).

* Figure 2-11: User-Defined Assertions In GoldWorks

The major difference between the relational and functional

• assertions is that in a functional assertion, if an assertion already

exists which matches the assertion being made with the exception of the

last value, then the old assertion will be retracted (13:71).

2-25

Whenever the developer desires that GoldWorks query the user for

additional information, he may use one of the three popup frames. A

popup frame either 1) asks the user for confirmation by answering a yes-

no question, 2) has the user type in the answer to a question, or 3) has

the user make a choice among a list of choices (9:91).

Certainty factors in GoldWorks range from 0.0 to 1.0. A fact with a

certainty factor of 1.0 is known to be absolutely true whereas something

with a certainty factor of 0.0 is known to be absolutely false. The way

certainty factors combine in rules is left up to the expert system

developer. The certainty factor function provided with GoldWorks, which

the developer may use, multiplies the lowest certainty factor of the

antecedent by the certainty factor of the rule (29:184-185).

2-26

0

III. An Overviev of ABC

This chapter provides an overview of the ABC expert system shell.

It will cover ABC's knowledge representations: facts, rules, askables,

and frames. The chapter will touch upon how ABC deals with working

memory, the dynamic part of the knowledge base, and will conclude with an

introduction to the files which may be needed to run a consultation with

ABC.

Knowledge Representations

* This chapter will take a broad view of the term knowledge

representations. Any structure used to represent either explicit domain-

specific knowledge or implicit domain-control knowledge will be

* considered a knowledge representation. In ABC, there are four methods of

representing knowledge: the fact, the rule, the askable, and the frame.

The first three of these representations are derivations of similar

* representations used in BC3. The frame representation was one of the

focal points of this thesis and will be discussed briefly in this

chapter; the interested reader will find further details in Chapter VI.

* All four of these representations work with Object-Attribute-Value (OAV)

triples.

3-1

Facts. Facts in ABC represent triples which are known to be true.

* They are used in much same the way that facts are used in M.1 or

nonstructured assertables in GoldWorkb. The fact that all fathers are

males or all mothers are females can be represented as a fact in the

* development of a genealogical expert system using ABC. Almost any known

truth which can be mapped into a OAV triple can be represented in ABC as

a fact.

* An example of how a fact may appear in the knowledge base is shown

in Figure 3-1.

fact: 'joe isa male'.

Figure 3-1: An Example of a Fact in ABC

In this example, the OAV triple is "joe isa male." The triple used in

this manner represents a known truth that joe is indeed a male. Facts

such as this one could also be represented in BC3 using the same syntax.

Facts in ABC can also use certainty factors. Representation of

facts with varying degrees or levels of certainty can be expressed.

* This is very important because many expert systems encode heuristic

knowledge, or rules of thumb, into their facts and rules. Allowing for

uncertainties in facts gives the expert system developer the flexibility

to encode rules of thumb which call upon facts with multiple levels of

truth values.

3-2

Briefly, certainty factors in ABC must be between 0 and 100. When a

fact or rule is known with complete certainty, its certainty factor is

100. If it is known to be false, then its certainty factor is 0. The

interested reader should read Chapter VII for additional information

concerning certainty factors within ABC.

A developer writing an expert system for a hospital may wish to

insert a fact that aspirin upsets the stomach. If it were known that

aspirin upsets the stomachs of approximately 40 percent of the

population, that fact may be represented in ABC as shown in Figure 3-2.

fact: 'aspirin upsets stomach cf 40'.

Figure 3-2: An Example of a Fact in ABC With Certainty Factor

The example in Figure 3-2 represents that aspirin will cause an upset

stomach with a CF of 40. If it were further known that this expert

system was going to be used in an emergency ward where it was critical to

keep the likelihood of an upset stomach to a minimum, a certainty factor

of 90 might be used.

If a fact is written without a certainty factor, as in Figure 3-1,

the certainty factor is assumed to be 100. Certainty factors of zero

are not normally used but facts with such certainty factors may in some

cases make a knowledge base more readable or maintainable.

3-3

0

Rules. The rules in ABC are considered the most crucial

representation of knowledge. Rules are somewhat analogous to the hub of

a wheel where facts, askables, and frames are spokes which aid and

support the rules. See Figure 3-3 for illustration.

-- Facts L_

Askables Rules Frames

Figure 3-3 Representations Center Around Rules

Facts, askables, and frames are all similar in one respect; they all

provide OAV triples in a representation such that the rules can use this

knowledge to infer new knowledge. It is in the rules where heuristic

knowledge can be represented and have its greatest effect.

An example of a rule in ABC, which could be part of an expert system

to diagnose car faults, is seen in Figure 3-4.

This example represents the heuristic knowledge that would indicate the

battery as the problem with a certainty factor of 85 if the car's engine

wouldn't start and if both the headlights and the horn didn't operate.

3-4

rule 23: if 'engine will not start' and
- 'headlights willnot operate' and

'horn will not operate'
then 'problem is battery cf 85'.

* Figure 3-4: Example of a Rule in ABC

Since ABC is a backward chaining expert system shell, a goal or

subgoal must match or be instantiated to the conclusion of a rule in

order for the rule to contribute to the solution. Tf the goal or subgoal

in the rule shown above was 'problem is Fault', then starting from the

first condition of the rule, each condition is made a subgoal and is

checked to see if a solution exists for that condition. If all of the

conditions of a rule can be solved, then the conclusion of the rule is

said to have a solution. If any of the conditions fail, then the entire

rule fails.

* Askables. Askables in ABC represent OAV triples which need to be

verified or chosen by the end-user. In its simplest form, an askable

requires the end-user to answer either yes or no to a question. In its

* more complex form, an askable asks a question, provides an enumerated

list of possible answers, and requires the end-user to select the best

choice. In either case, an askable is called upon only as a last resort

* to solve an OAV triple for which no facts, rules, or frames provide

information. The one exception to this rule is an askable called

"initial-askable".

3-5

Initial-askables are askables which prompt the user for information

automatically at the beginning of every consultation. An example of an

initialaskable which might be used in a vine advisory expert system is

shown in Figure 3-5.

initial askable: 'main_component is Variable' derived from
"What is the main component of the meal?" and 'meat fish poultry'.

Figure 3-5: Example of Initial Askable in ABC

This askable would be called at the beginning of a consultation with the

wine advisory expert system and the user would see the ABC-generated

prompt shown in Figure 3-6 displayed on his monitor.

What is the main component of the meal?

1. meat
2. fish

• 3. poultry

Enter Number or w (for why) >

* Figure 3-6: An Example of an ABC InitialAskable Prompt

After the end-user enters a valid number, the OAV triple is asserted into

the Prolog database and is considered a fact from that point on. If the

user were to select number two in the above example, the triple

3-6

"main_component is fish" would be asserted as a fact for the rest of the

consultation.

Frames. Frames in ABC are, to a small degree, similar to facts.

Frames either exist or they don't. If they do exist, they do so to

support the rules. Frames differ from facts in at least two major

points. Frames allow for the hierarchical structure of objects in a more

efficient and easier-to-read format than facts. Frames also make use of

demons, i.e., automatic execution of Prolog procedures, if their slots

are designated by the developer with either an if-needed, if-added, or

if-remove facet. An example of a frame in ABC is illustrated in Figure

3-7.

frame : cabernet sauvignon
slot 'color value red'
slot 'body value light medium full'
slot 'sweetness value dry medium'
slot 'cost if-needed find-cost'.

Figure 3-7: An Example of a Frame in ABC

The frame represents the wine cabernet sauvignon. Each of the

frame's slots, except the last one, is a "value" slot. Value slots hold

one or more values but do not execute demons. The last slot, cost, is an

if-needed slot. If the cost of this wine is needed, the demon procedure

called "find-cost" will automatically be executed.

3-7

Working Memory

The knowledge base of ABC can be subdivided into two parts: static

and dynamic. The static portion of the knowledge base contains rules,

basic facts, and askables which were entered into the knowledge base by

the expert system developer. Usually, the static knowledge of the

expert system is entered before it is fielded or during a modification.

In comparison, the dynamic part of the knowledge base, called

working memory, is knowledge which is gained dynamically from the use of

the expert system itself. During a consultation with the end-user, an

askable or demon procedure can extract knowledge from the end-user. This

extrarted knowledge can be saved so that in future consultations, the

end-user will be spared from repeatedly entering the same information.

One major -dvantage of working memory is its ability to grow. With

a well thought out static knowledge base, it is conceivable that a small

working memory could grow to several times its original size.

In ABC, working memory is kept in a separate file from the rest of

* the knowledge base. By using separate files, working memory can be

loaded into the Prolog database or saved from the Prolog database to a

file without altering the static portion of the knowledge base.

3-8

IV. BC3 - Phase One: The Origin of ABC

This chapter has two main objectives: 1) to review the expert system

shell BC3, and 2) to explain what inefficiencies were found in BC3 and

what code modifications were made to correct them. In this chapter, the

knowledge representations used in BC3 will be discussed in addition to

the "How" and "Why" trace facilities. The last section concerning the

first objective of this chapter will provide information on the user

interface of BC3. The remainder of the chapter will detail two problems

found in BC3 and what actions were taken to solve them.

Knovledge Representations

The knowledge representations in BC3 do not stray far from the

equivalent underlying Prolog representations. In Prolog, there are facts

and rules expressed with horn clauses. In BC3, there are also facts and

rules. These facts and rules are expressed exactly the same way as the

* facts and rules covered in the last chapter on ABC with one exception.

The facts and rules in BC3 can not provide a certainty factor.

Basically, all knowledge in BC3 must be symbolicly represented in the

* form of object-attribute-value (OAV) triples. Furthermore, these OAV

triples must be in the form of a BC3 fact, rule, or askable, each of

which is described below.

* BC3's representation enables the inference mechanism to manipulate

the knowledge in the knowledge base and create and maintain both the

"how" and "why" trace.

4-1

Facts in BC3 are expressed in the form "fact : [obj,attr,val]."

where the object-attribute-value (OAV) triple is being asserted as a

given or a truth. This same fact could be represented in Prolog as

"attr(obj,val)." For most beginning students, the BC3 form of the

representation is much more "user friendly" and readable.

Likewise, students will find rules in BC3 are also more

understandable than their Prolog counterparts. An example of a rule in

BC3 is shown in Figure 4-1.

rule_23: if [objl,attrl,vall] and
[obj2,attr2,val2J or
Jobj3,attr3,val3I

then [obj4,attr4,val4].

Figure 4-1: An Example of a Rule in BC3

The BC3 rule in Figure 4-1 is equivalent to the Prolog rule in Figure

4-2.

attr4(obj4,val4) :-
attrl(objl,vall),
attr2(obj2,val2);
attr3(obj3,val3).

Figure 4-2: Prolog Equivalent of BC3 Rule

Again, the BC3 rule provides the same basic functions as the underlying

Prolog, yet with a more "English-like" structure at the moderate cost of

some efficiency.

4-2

A BC3 askable does not have a straightforward Prolog equivalent

representation such as a fact or rule. The askable in BC3 is merely a

OAV triple which can take one of two forms based upon the value

associated with the triple's object-attribute pair. The askable provides

the inference mechanism with some other method of solving a goal: it asks

the user for additional information concerning an OAV triple. If the

"value" portion of the triple is instantiated to a single value, a Prolog

atom, then the BC3 askable simply asks the user to verify the OAV triple.

A second form is where the value is uninstantiated. Like the first form

of askable, this form will prompt the user to select the correct value

from a list of possible valid values.

An askable in BC3 can thus be seen to have the behavior which could

be produced with the following Prolog code: "attr(obj,Value) :-

ask_question(obj,attr,Value)" where the Prolog predicate ask_question

would have to determine which of the two forms of askable is required

and provide the necessary question to the user.

The How Trace

There exist problem domains which, if an expert system was developed

which could provide solutions to these problems, it would be almost as

important to know how the solution was derived as opposed to knowing the

solution itself. To be able to tell the user how a solution was derived,

BC3 creates and maintains a "how" trace. The "how" trace is activated

at the user's request; the user is provided a path between the goal and

the solution which shows each fact, rule, or askable which was necessary

4-3

to satisfy the goal. The method BC3 uses to accomplish this task takes

advantage of Prolog lists.

Unlike ABC, where the trace is kept in the Prolog database under the

predicate 'trace/i', BC3 keeps a trace in the form of an accumulating

list. This list is initialized in the BC3 predicate 'solve/3' and grows

each time it gets passed to one of BC3's 'is known/3' predicates where a

triple is found to be true. When a solution is reached during a

consultation, the goals are placed at the beginning of the list and the

user is prompted to see if a trace of the solution is needed. If the

user requests a trace, the final "how" trace list is processed through a

*"pretty" printing procedure. The output of this procedure is sent to the

display monitor to show the user the path taken between the goals and the

solution.

The Why Trace

BC3 allows its inference engine to prompt the user for the value of

an object-attribute pair, via an askable, if the value cannot otherwise

be found. When this happens, BC3 allows the user to ask why the

inference engine is prompting for this particular value. To explain why

a prompt is being asked, BC3 maintains a "why" trace. BC3's "why" trace

works with Prolog lists in a fashion similar to the "how" trace, but the

list is not passed around as an argument of a predicate.

Like the "how" trace, the "why" trace is initialized with the BC3

predicate "solve/3." The "why" trace is reinitialized for each goal by

placing the goal itself in the "why" trace list. This list is stored in

*the Prolog database under the predicate "why trace/1." The "why" trace

4-4

0

list gets modified if a rule is used to solve the current goal. The rule

along with all of its conditions gets placed into the list and the list

gets reasserted into the Prolog database. When the inference engine nov

resorts to the last attempt effort to solve a goal or subgoal via an

askable, the user may reply to a BC3 generated question by replying

"why."

When the user does respond to a question with "why", BC3's predicate

'explainwhy/l' retracts the "why" trace list from the Prolog database

and displays it. After the trace list shows the inferencing steps

leading up to its question, the question is asked again.

User Interface

There are two types of users of any expert system shell. There is

the developer, who uses the expert system shell to produce the expert

system, and there is the end-user, who uses the resulting expert system

to solve a class of problems. More is said about the two types of users

*in Chapter V. There can therefore be at least two types of user

interfaces: one for the developer and one for the end-user. This is

true for the commercial expert system shell GoldWorks.

*In BC3, the developer must enter knowledge, in the form of facts,

rules, and askables, into an ASCII file via a text editor to generate an

expert system knowledge base (KB). Previous sections of this chapter

* provide an example of how both a fact and a rule are represented in BC3.

An askable can be presented in a similar fashion. An example of an

askable in BC3 is illustrated in Figure 4-3.

0

4-5

0

askable: [Student,sex,[male,female]].

Figure 4-3: An Example of an Askable in BC3

Because the user interface between BC3 and the developer uses the

Prolog read predicate, each fact, rule, or askable read from the

developer's knowledge base must be a proper Prolog structure. Since the

structure used in BC3 to hold the OAV triples is the Prolog list, the

simplest solution to the interface problem was to require the developer

to enter OAV triples in the form of a Prolog list (see Figures 4-1 and

4-3). Similar associations between BC3 and Prolog can be seen by the

end-user because of the end-user interface.

Whenever the end-user is prompted to answer questions from either

control mechanisms or askables, his answer must be followed by a period

and then followed by a return. The Prolog reader imposes this format-

restraint in order to read Prolog terms from the input device. An

example of this is when BC3 asks "Do you wish to see how this answer was

arrived at?". The user, wanting to respond negatively, must respond with

"n.<CR>" where <CR> signifies the depressing of the carriage-return key.

BC3 Problems and Solutions

The first of the four phases of this thesis was to study BC3,

understand how and why it functions, and attempt to improve its

effectiveness or efficiency without changing its function or user-

4-6

interfaces. There were two problems uncovered during this phase: 1) The

ordering of the 'is-known' predicate, which controlled the inferencing in

BC3, and 2) the handling of the "how" and "why" trace mechanisms. Both

of these two problem areas were investigated using Arity Prolog's trace

and timing utilities. The problems and their solutions are described

below.

The 'is knovn' Predicate. BC3 builds upon Prolog's basic back-

tracking inferencing mechanism to provide its own inferencing. It

accomplishes this task through the use of a predicate called "is known".

The efficiency of BC3's isknown predicate was found to be a problem.

In order to better understand the problem with the is-known

predicate, some additional background is needed. In a backward-chaining

expert system shell, the goal is known and the inference engine attempts

to see if the knowledge base can confirm the goal. When a goal or

subgoal, represented by an OAV triple, is trying to be confirmed in BC3,

the inference mechanism goes through a series of checks.

The steps BC3 goes through to see if an OAV triple is known are

outlined in Figure 4-4.

To increase efficiency and reduce unnecessary backtracking, one of

the solutions was to reduce and reorder the rules within the is-known

predicate. Five of the rules, which correspond to steps 2, 4, 6, 8, and

11 in Figure 4-4, all look into the trace to see if a triple had been

solved previously. One rule, more general in its search pattern,

replaced all five of these rules while maintaining the integrity of the

original five rules.

4

4-7

0

1: It checks to see if the triple had previously been denied.

2: It checks to see if the triple is a fact and had been solved
before.

3: It checks to see if the triple is a fact in the knowledge
base.

4: It checks to see if the triple was confirmed by the user and
had been solved before.

5: It checks to see if the triple was confirmed by the user.

9 6: It checks to see if the triple is a Prolog goal which had
been solved before.

7: It checks to see if the triple is a Prolog goal which can be
solved.

S 8: It checks to see if the triple is a rule which had been
solved before.

9: It checks to see if the triple is a rule whose conditions
are known.

10: It checks to see if the triple is part of a rule structure,
ANDing, ORing, or NOTting it to additional conditions and
recursively tries to solve the other conditions.

11: It checks to see if the triple was told by the user and was
solved before.

12: It checks to see if the triple is "askable" and if possible,
asks the user to either confirm the triple or provide the
missing link of the triple. These steps are controlled by
the 17 rules which make up the is-known predicate.

Figure 4-4: BC3's 'is known /3' Inferencing Steps

* To maximize efficiency, the rules with the most specific input

requirements should always go first, assuming that the logic is not

changed. By reducing the rules within the isknown predicate and by

• reorganizing the remaining rules by placing the rules with the most

4-8

specific arguments before the more general rules, a 38.8% reduction of

time was realized to run an expert system consultation (refer to last

section of this chapter).

Altering The Trace Mechanisms. The second method found to increase

both the efficiency and the effectiveness of BC3 was to alter both the

"how" trace and the "why" trace. As mentioned previously, the how trace

is passed along as a list during the recursive calls to the 'is known'

predicate. List manipulations, such as 'append' and 'remove', make both

trace mechanisms highly inefficient in large knowledge bases where lists

can get lengthy.

A relatively simple solution to this problem was to assert each step

of the solution into the Prolog database under a cover predicate called

'trace'. This not only makes BC3 much faster, up to 35.5% faster (refer

to last section of this chapter) with a small knowledge base, but also

frees stack space. Depending on the interpreter being used, stack space

could be a precious commodity easily depleted by anything other than a

small knowledge base. To view the trace, a match-write-fail loop steps

through the database sequentially displaying the trace in proper

sequence.

Testing Solutions. Using two modified versions of a knowledge base,

called "ttl2.bc3" and "ttl3.bc3", developed by the author in the

introductory AI class, EENG-592, a series of five tests was performed.

Each of the tests was run on a IBM AT running at a clock speed of 6

megahertz. The Prolog-1 interpreter was used on the first test and the

Arity version 5.Ox Prolog interpreter on the remaining tests. The

* knowledge base "ttl2.kb" was designed to succeed after traveling through

4-9

a search path which consisted of approximately two dozen rules. The

knowledge base "ttl3.kb" was identical to "ttl2.kb", but was given a

different goal such that it could not succeed and would fail after trying

to solve only seven or eight rules.

The first test-set was made using the unmodified BC3 with the

Prolog-1 interpreter. The times were arrived at using a stop watch and

was truncated to the nearest second. The remainder of the tests were

made using the Arity interpreter which made use of built-in predicates to

perform timing tests to within one one-hundredth of a second. The second

test set was made using the unmodified BC3. The third test set was made

using the new trace mechanisms mentioned above. The fourth test set was

made using the both the new trace mechanisms and the new rule arrangement

within the is known predicate. The last test set was made using the ABC

shell after the second phase and is entered here for the curious reader.

All tests except those in the first set were completed using the Arity

interpreter. The test results are shown in Figure 4-5.

* Time for Time for
Expert System Shell Description ttl2.bc3 ttl3.bc3

BC3.PRO (using Prolog-1 - BASELINE) 1' 52" 34"

* BC3a.ARI (same only using Arity) 31.74" 7.75"

BC3b.ARI (new trace mechanism) 26.58" 5.72"

BC3c.ARI (new is known arrangement) 16.26" 5.38"

* ABC_p2.ARI (phase 2 of ABC) 14.17" 5.87"

Figure 4-5: BC3 Test Times

4-10

V. Phase Tvo: ABC's User Interface

One of the primary objectives of this thesis was to provide a better

user interface to an educational expert system shell than was previously

available with BC3. This task was designated as the second phase of a

four phase approach in the realization of ABC. The primary concern was

to isolate the user from the constraints that Prolog imposes when

interfacing with ABC. Included in this chapter is discussion on the

different approaches which were considered relevant to a user interface,

along with the solution chosen and some of the mechanics involved.

The Tvo Types of Users

As was stated in Chapter IV, there are at least two types of users

in every expert system shell: expert system developers and end-users.

The developer acts as a "knowledge engineer," encoding domain-specific

knowledge into the rules and facts of a knowledge base. The end-user is

anyone who takes advantage of the expertise in the expert system to

perform a particular task. The developers are generally more

knowledgeable about the use of facts and rules and programming in general

than the end users. Still, it is important to make the developer's

interface as "friendly" as possible without sacrificing too much

flexibility, efficiency, or power.

The goals of the developer and the end-user are very different. The

developer wants to input test cases to make sure the knowledge base is

complete or "robust." He may wish to add, delete, or modify existing

5-1

facts or rules on-line to study the effects to insure this completeness

(22:135-139). Usually, the end user is not concerned with such matters.

The end-user is more concerned about how easy it is to get

information about his problem entered into the expert system in order to

get a solution which he can understand. If the expert system prompts him

for a question, he doesn't want the question to be cryptic nor does he

want it to be ambiguous. When replying with an answer, end users would

usually prefer to make one simple and straightforward keystroke as

opposed to a sequence of keystrokes requiring memorization.

In an educational expert system shell, the developer and the end

user are frequently the same. Since an educational expert system shell

is designed for students, it is important to have a good user interface

at both the developer's level and for the end user.

The Command Line

Execution within the top-level of BC3 is very sequential. Upon

* starting BC3, a sequence of events take place: 1) the shell prompts the

user for the name of the knowledge base file, 2) working memory, if

present, is consulted into the Prolog database, 3) the consultation

* begins, 4) the consultation ends, 5) the user requests a trace, 6)

working memory is saved. This sequence cannot be altered.

One of the first changes to the user interface of BC3 was the

* adoption of a command line. The new command line is similar to

Teknowledge's M.1 command line. It modularizes the top level into

functional divisions. Each ABC command corresponds to one of the

* functional divisions. The "how" trace is an example of one of these

5-2

divisions. Typing "trace" at the ABC prompt will provide the end user

with the most current "how" trace and return him to the ABC prompt. At

any ABC prompt, the user may type any of the ABC commands (see appendix C

for a list of ABC commands).

The Developer's Interface

With BC3, the developer enters facts and rules into an ASCII file

using the symbolic object-attribute-value (OAV) triples to encode the

domain knowledge. In BC3, the OAV triples have to be represented in the

form of a Prolog list (see Figure 5-1). Several methods were

investigated to read the OAV triples into the Prolog database without

having the triples placed into a list structure imposed by the Prolog

reader.

All of the methods researched to read in OAV triples were in one of

two categories: methods using the Prolog reader or methods using the

'getO' Prolog predicate. The procedures tested using the Prolog reader

to read OAV triples from a file were anywhere between one and two orders

of magnitude quicker than a procedure using the 'getO' predicate. When

using the 'getO' predicate, each character of a file (printable or not)

has to be checked to see if it marks the end of a file or the beginning

of a comment. This extra overhead makes the 'getO' predicate inefficient

when used to read large files.

There are a couple of published examples of standard Clocksin and

Mellish Prolog procedures which read a structure, such as a normal

English sentence, and parse it into words (5:102-104, 15:203-210, 3:148-

151). Modified versions of these procedures showed their usefulness in

5-3

parsing small sentences of a very narrowly defined structure (i.e., words

separated by spaces). However, when these procedures were modified to

check for the end of file or the beginning of a comment, or were modified

to accept both Prolog code and some other predetermined structure, they

were annoyingly inefficient.

Using the Prolog reader not only provided superior efficiency, but

also allowed the use of Prolog comments in the knowledge base file

without having to be concerned about their entering the Prolog database.

Also, whenever any atom starting with an underscore or capital letter is

read by the Prolog reader, it is immediately stored in the Prolog

database as a variabl

There are however, some drawbacks to using the Prolog reader. To

input structures via the Prolog reader requires that the structures be in

proper Prolog format.

Single Quotes: An Alternative to Prolog Lists. Deciding on using

the Prolog reader when faced with the only alternative, the Prolog 'getO'

predicate, was no hard decision. Tests showed that while the procedures

using the Prolog 'read' predicate were not as fast as procedures using

other non-standard Prolog predicates (available with the Arity

interpreter), they were practical for pedagogical purposes.

To rid the knowledge base of OAV triples wrapped in Prolog lists,

two procedures were considered using the Prolog reader. The first

procedure used single quotes to transform the OAV triple into an atom.

The second method considered used double quotes. The second method

turned the OAV triple into a list of ASCII numbers. The code was the

same for both procedures with one exception. When using single quotes,

5-4

the OAV triple, now an atom, had to be transformed into an ASCII list.

The procedure using double quotes did this automatically.

The procedure using single quotes was chosen as being better for two

reasons. Studying knowledge bases which had both single quoted and

double quoted OAV triple representations, the single quoted OAV triple

looked clearer, more appealing, and easier to read. Secondly, since both

procedures are rather complex, the time it took to transform an atom to

an ASCII list using the Prolog predicate 'name' could be treated as

negligible. Figure 5-1 illustrates how a fact is entered in the

knowledge base file in BC3 along with how it is entered using both the

single quoted and double quoted procedures.

In BC3 => fact: [amy,llkes,bachJ.

* Single Quoted => fact: 'amy likes bach'.

Double Quoted => fact: "amy likes bach".

* Figure 5-1: Different Ways to Enter OAV Triples

ABC Commands For The Developer. There are several ABC commands

* provided to make the developer's job easier. The developer, or the end

user, can review, add, or delete goals online. He may also review

frames, review rules, or add a frame from inside ABC using the

* appropriate commands. See appendix C for complete details on all the

commands available in ABC.

5

5-5

The Hechanics Involved. The entire procedure used to read in a

knowledge base full of facts, rules, and askables in ABC is simple for

the user to accomplish.

First, the user must tell ABC that he wants to load a knowledge

base. This is accomplished by the user's typing "load" at the ABC

prompt. This will in turn invoke ABC to prompt the user to supply the

filename for the knowledge base. This prompt is shown in Figure 5-2.

The user types in the filename, with extension of either ".kb" or ".abc"

(more on the extensions later) and ABC will respond by doing one of two

ABC > load

Enter the name of the file where your knowledge base is stored,
or enter <Return> to abort.

Filename, including path is: vine.abe

Figure 5-2: The Load Prompt in ABC

things. Either ABC will read and parse the knowledge base with extension

".kb", create the knowledge base with the ".abc" extension then read the

".abc" file or it will simply read in the knowledge base with extension

".abc". The decision is invisible to the user; ABC will parse the file

name and automatically decide which of the two courses of action is

appropriate.

The knowledge base with the ".kb" extension represents OAV triples

as atoms within single quotes. The expert system developer would

5-6

normally use a text editor and create and save a knowledge base to an

ASCII file with the ".kb" extension. However, the internal symbolic

representation of OAV triples in ABC, like its predecessor BC3, are

Prolog lists. In order for the original knowledge base with the ".kb"

extension to be of any use, it must successfully be converted. This

conversion process is briefly discussed in the following paragraph.

First, a term is read from the knowledge base file. This term is

then parsed into legal components such as triples or operators. If the

component is a triple, then the triple is converted into a list. Once

al. of the triples have been converted into list structures, the

converted term is written out to the new file with the ".abc" extension.

This process continues until all the terms in the original knowledge base

has been read, converted, and written to the new file. After the new

file has all the parsed and converted knowledge written to it, it is then

closed as an output file and immediately reopened as an input file and

all the terms are read again, only this time all the OAV triples are in

Prolog list format. The new terms are then asserted into the Prolog

database.

Subsequent loading of the knowledge base is much faster if the end

user loads the parsed and converted knowledge base with the ".abc"

extension.

The End-User's Interface

In BC3, there are two problems with the end-user's interface. The

first problem has two parts which were corrected with two solutions.

When BC3 prompts the user with a yes-or-no type question, the user has

5-7

to reply with at least a "y" or "n" followed by a period and then

followed by a carriage return. The second part of the first problem is

similar. When BC3 prompts the user with a question which requires the

user to make a selection from a list of valid answers, the user has to

enter the exact answer, with no misspelling, followed by a period and

then followed by a return. The second problem was the way questions were

posed to the end-user. BC3 did not allow an "askable" to have a unique

style of question. Each question would be asked in a fashion similar to

Figure 5-5.

'get reply' and 'readline' Predicates. To solve the first problem,

* two predicates were formed: 'getreply' and 'readline' (see Figures 5-3

and 5-4). The 'get_reply' predicate simply got the first character which

was checked to see if it was either a "y" for yes, a "n" for no, a "w"

*• for why, or just a carriage return which always defaulted to mean yes.

Rather than using the 'read' predicate after a yes-or-no type question,

which requires at least three keystrokes, the new 'getreply' predicate

*• gets the user's response with one keystroke. If the response is invalid,

the computer will alert the user and prompt for another answer.

The 'readline' predicate allows the user to type in letters,

* symbols, and numbers into a buffer while they simultaneously show up on

the computer's screen. Using the rubout key is also permitted, to delete

existing characters. The 'readline' predicate is transparent; the end-

* user is not made aware that control of what is being presented on the

screen has been changed. When the return key is pressed, the contents of

the buffer are sent back as a Prolog atom-type argument. This predicate

5-8

getreply(Reply)
getO(User Reply), nl,
(User Reply = 13,
Reply = yes

User Reply = 121,
Reply = yes

User Reply = 110,
Reply = no

User Reply = 119,
Reply = why

nl,nl,
vrite('You must enter either a "y" or "n", or if you wish,'),
nl,vrite('just hit a return for yes.'),
get_reply(Reply)

Figure 5-3: The ABC 'get_reply' Predicate

allows data to be entered into ABC without the need for Prolog structures

or the period which is required by the Prolog reader.

Enumerated Askables. Whenever the user is prompted by an askable-

generated question, BC3 will provide a prompt similar to the one in

Figure 5-5. This prompt implies that the value for the object-

attribute pair is not known and that with the data in the knowledge base,

it will never be known. It requests the user to select the appropriate

answer from a list of valid or legal values and to type that value in.

ABC corrects this user interface problem by placing a question

inside each askable. This allows the developer to create a question

tailor-made for the situation and does not transfer the burden of

understanding what is being asked to the end-user.

5-9

readline(TempList, Line)
* getO(Char), I,

(Char = 13, I, nl, /* A Return Key is */
reverse(TempList, Line List), /* Pressed. */
name(Line, LineList)

Char = 8, I, /* The Rubout Key */
put(32), put(8), /* is Pressed.
TempList = [HeadiTailJ,
readline(Tail, Line)

identifier(Char),I, /* Char is a legal */
readline([CharlTempList], Line) /* identified char- */

/* character or a */
Char = 32,!, /* space. */
readline([321TempList), Line)

readline(TempList, Line)
0,.

Figure 5-4: The ABC 'readline' Predicate

• main component is?
Legal values: Imeat,fish,poultry]
> meat. <CR>

* Figure 5-5: Prompt From BC3 Askable

Using ABC, all enumerated askables are displayed as shown in Figure

5-6. The askable in Figure 5-5 is the same as the one used in Figure 5-

6. Notice the typical reply which is required by BC3 is less intuitive

than the reply required by ABC (printed in bold characters).

5-10

The user-interface was tested using the vine knowledge base in

Appendix-G and was successful in isolating the user from the underlying

Prolog reader constraint of entering replies in Prolog syntax.

* What is the main component of the meal?

1. meat
2. fish
3. poultry

• Enter Number > 1

Figure 5-6: Prompt From ABC Askable

Summar

* The developer's and end-user's interfaces have been enhanced over

what was currently available with BC3. The developer does not have to

type in OAV triples in the form of a Prolog list and the end-user is

* prompted by specific customized questions. Additionally, valid answers

to questions are enumerated, enabling the end-user to select an answer

with a single keystroke.

5-11

VI. Phase Three: Implementing Frames

The primary purpose of this thesis was to integrate Object-

Attribute-Value triples with frames. This meant that a frame structure

had to be found or developed which would allow such integration. This

chapter will cover the frame structure which ABC uses, how this structure

allows the integration of OAV triples, and will briefly discuss the

underlying frame language which allows it to perform. The task of

integrating frames into ABC was designated as phase three of a four phase

approach to its completion.

The Frame Structure

The basic frame structure in ABC uses the frame itself to represent

• an object. Since an object may have one or more attributes, each

attribute having one or more values, the frame structure must be able to

symbolize an object's attributes and values efficiently.

*_ Frames can have one or more slots. The basic structure of ABC

frames makes use of this characteristic by using slots to represent the

object's attributes. This allows an object being represented with a

*frame to have as mdny attributes as necessary to define it to the level

of abstraction or detail needed. An object-attribute pair can therefore

be represented by a frame, whose frame-name is the object, and having at

* least one slot whose slot-name is the attribute.

0

6-1

0

For the ABC frame structure to work with OAV triples, the value of

a frame slot must represent all of the possible values of an object-

attribute pair. This is accomplished in ABC by placing the object-

attribute values in a list and having this list be the slot value.

Each frame in ABC is also capable of supporting demons. Demons in

ABC are Prolog goals which may be procedural in nature. They are

automatically executed whenever the inference engine attempts either to

get a value, add a value, or delete a value from a frame; the slot's

facet is either "if-needed", "if-added", or "if-removed" respectively.

For additional information on how demons function, refer to the user's

manual in Appendix C.

The basic structure of the ABC frame is illustrated in Figure 6-1.

ABC integrates frames and OAV triples as follows: a frame is the object

of an OAV triple; the frame's slots are the attributes of the object

represented by the frame, and the value of each slot is a list which

represents the values of the object-attribute pairs.

The Frame-Base Language

Once the conceptual part of developing the frame structure was

*complete, the next step required Prolog code which would tie frames

together with the prototype ABC system developed from the first two

phases. Rather than developing the code using a top-down approach, the

* framebase language was developed from the bottom up.

The basic structure of a frame in ABC appears similar internally to

the frame shown in Figure 6-2. The frame in Figure 6-2 has slots which

6-2

0

0

Frame Name = Object

Slot Name = Attribute Slot Value = List of
Values

0I

Figure 6-1: ABC's Frame Structure

are made up of a list containing the slot name, the slot facet, and the

slot values. The first slot in the figure indicates the attribute as

"ako", which is a synonym for "a kind of." These attributes allow frames

in ABC to acquire attributes and values from frames higher in their

hierarchical tree. The last two slots are examples of how demons are

placed within a frame.

frame : tweetie
slot [ako,value,canaryJ
slot Iowner,value,joe,maryl
slot [born,if needed,ask_dob]
slot [age,if needed,find_agel.

Figure 6-2: A Typical ABC Frame

6-3

A frame-base language was then written based upon three Prolog

predicates: 'frameget', 'frameput', and 'frame-delete'. Much of the

Prolog code was inspired or derived from previous work in a similar area

(6:237-258).

0 Accessing a Frame Value. Obtaining the values within a frame slot

is fundamental in any frame language. Given a frame name and a slot

name, a Prolog procedure was written called 'frameget' to obtain a list

• of all values for that particular slot. To obtain an individual value,

the calling procedure can use the standard 'member' predicate on the

list returned from the 'frameget' predicate.

• The 'frame_get' predicate is hierarchical. It will first look for a

frame slot with the facet being set to "value". If the value slot

cannot be found or the value slot does not contain the necessary value,

* the 'frameget' predicate will continue to search. The 'frameget'

predicate will next search for a slot with the facet being set to

'default'. If either the default slot does not exist or the value needed

* is not in the default slot then the search continues. Lastly,

'frameget' will search for a slot which contains the 'ifneeded' facet.

The 'ifneeded' facet will cause a Prolog procedure to be executed in

* order to obtain the necessary value. If this slot does not exist, or the

demon called into execution by this slot does not succeed, then the

'frame_get' predicate will fail.

Adding a Value to a Slot. Adding a value to a slot makes use of an

ABC predicate called 'frameput'. When adding a value to a slot,

'frame-put' checks to see if a slot already exists which matches the

6-4

triple's attribute and has an 'if-added' facet. If there is such a slot,

the demon procedure associated with the 'if added' facet is executed to

produce some side effect.

Regardless of whether there is a demon executed, the 'frame-put'

procedure places a value in the appropriate slot of the frame, even if it

means having to create a slot specifically for the value which is being

added. If the appropriate slot already exists, the list of old values

is retracted from working memory and the new value is appended to the

front of the old list and reasserted into working memory. If the end

user elects to save the working memory after a consultation, then the new

values are asserted into the working memory file.

Deleting a Value From a Slot. A value may be deleted from a frame

using ABC's 'frame remove' predicate. If there exists a slot in the

frame which matches the triple's attribute and furthermore has a

'if-removed' facet associated with it, then similar to the 'if-added'

demon, the 'if-removed' demon would be executed, possibly providing some

* side effect. Again, regardless of whether an 'if-added' facet exists,

the value, if it exists, will be deleted from the frame.

ABC's 'if removed' predicate is smart enough to determine if the

* value is the last value in a particular slot. If the last value is

removed from a slot, the slot itself is then removed from the frame

automatically. Additionally, if the last slot is removed from a frame,

* the entire frame is deleted.

6-5

Adding or Deleting Slots or Frames. There are no predicates in ABC

which will add or delete entire slots or frames. Although these

predicates could be created easily, they are not necessary since other

more general or higher-level procedures could be accomplished utilizing

the three predicates, 'frame-get', 'frame-put', and 'frame remove' along

with other predicates such as 'retract all'.

Summary

Integrating frames with OAV triples in ABC was accomplished by

allowing the frame-name to be the object, the slot-name to be the

* attribute, and the slot-value to be a list of values which can be

associated with an object-attribute pair.

6-6

0

VII. Phase Four: Uncertainties

This chapter covers how uncertainties are integrated into ABC. It

is the last phase of a four phase development effort to create the ABC

expert system shell. In this chapter, a brief review of how rules and

facts use certainty factors is followed by a discussion of the search

strategy which the inference engine uses to attain its goal. The last

section will explain what modifications to the ABC "how" and "why" trace

were required when uncertainties were added.

Uncertainties in Rules and Facts

Chapters I and II provide an explanation as to why it is so

important to have the capability to reason with inexact knowledge via

rules and facts employing some type of confidence mechanism. Briefly,

the power to reason with rules and facts, representing expert domain

knowledge with varying degrees of certainty, significantly expands the

* feasibility of expert systems in domains where human experts call upon

their inexact or uncertain knowledge to make decisions (11:239).

Chapter III provides information on how uncertainties are placed

* into the rules and facts of ABC. When a fact has a certainty factor of

100, the OAV triple within the fact "is known" to be true with a

certainty factor of 100. Unlike a fact with a certainty factor of 100,

* if a rule either implicitly or explicitly has a certainty factor of 100,

the triple which is the conclusion of the rule is not necessarily "known"

with a certainty factor of 100.

7-1

Certainty factors in rules follow five rules outlined in Figure 7-1.

The OAV triple which is the conclusion of a rule "is known" if the OAV

triples which make up the premise of the rule are known. The certainty

with which an OAV triple is known if the rule succeeds is the product of

the certainty factor of the rule's conclusion and the overall certainty

factor of its premise.

1. The certainty factor of two or more conjunctive conditions
in the premise of a rule is equal to the lowest certainty
factor of those conditions.

2. The certainty facto; of two disjunctive conditions in the
premise of a rule is equivalent to the certainty factor
obtained by viewing the disjunct conditions as two distinct
rules.

3. The overall certainty factor of a rule is the product of
the overall certainty factor of the premise and the
certainty factor of the rule.

4. The certainty factor of two rules having the same conclusion
can be calculated as follows.

CF(Overall) = CFI + CF2 * (100 - CF1)/100

5. The certainty factor of an OAV triple asserted as "known"
can be increased using the same calculation as snown in
rule 4 above when additional rules or facts add support
to the triple's validity.

Figure 7-1: Rules Concerning Calculating Certainties in ABC

7-2

ABC has basically the same certainty factor characteristics as are

found in M.1 (Refer to Chapter II for overview of M.1). The predicate

in ABC which calculates the resultant certainty factor when a previously

asserted OAV triple is solved again, is the 'calculateCF' predicate

shown in Figure 7-2. Note that the 'calculateCF' predicate implements

rule four of the certainty factor rules listed in Figure 7-1.

calculateCF(l00,_,00).
calculateCF(_106,,100).

calculate CF(CF1, CF2, CF) :-
CF is CF1 + (100 - CF1) / 100 * CF2, !.

Figure 7-2: ABC's CalculateCF Predicate

The Search Stratey

The educational expert system shell BC3 does not use certainty

factors. Given a goal to prove, BC3 searches through the knowledge base

using a directed depth-first search. BC3 proves its goal(s) either

directly, by matching the OAV goal with an asserted OAV triple, or more

commonly, indirectly, by finding a rule whose conclusion matches the

goal's OAV triple and whose premise can be proven. Once a singular path

is found, BC3 discontinues any further search for additional paths even

if other solutions exist. In ABC, the search is more complex but the

method used is comparable.

7-3

In ABC, unless the top goal is known with a certainty of 100,

the search for additional solutions continue. The search for multiple

solutions to a goal is performed using a directed depth-first search much

like that used in BC3. The major difference between BC3 and ABC, with

respect to its search for solutions, is that ABC will assert the solution

as being found, check the solution to see if its certainty factor is less

than 100, and if so, continue the search for a different solution or a

different path to the same solution.

ABC terminates its search for additional solutions to a goal upon

reaching one of two states: it finds a solution with a certainty factor

of 100, or it exhausts all possible paths which could create additional

solutions.

ABC takes advantage of Prolog's built-in backtracking capability to

implement its directed depth-first search strategy. While this may not

have been the most efficient search strategy, it was seen as the best

method to approach such a formidable task and at the same time, provide

an educational example of depth-first search.

The search strategy does impose a constraint on the expert system

developer of which he should be made aware. An expert system will run

more efficiently if facts or rules with certainty factors of 100 are

placed before facts and rules, concerning the same OAV triple, with a

lesser certainty factor. For example, Figure 7-3 shows the correct

ordering of two rules. This constraint is imposed because of the strong

reliance of ABC's inference mechanism on the the procedural aspect of the

underlying Prolog control strategy.

7-4

rule_24 : if 'aspirin upsets stomach' and
* 'patient complains about stomachpain'

then 'prescribe painreliever aspirin_free'.

rule_25 : if 'patient has liver_problem'
then 'prescribe painreliever aspirinfree cf 85'.

Figure 7-3: Proper Ordering of Rules in ABC

Even though the first rule in Figure 7-3 doesn't explicitly declare

its certainty factor, the default in ABC for all undeclared certainty

factors is 100, thus; the rule with the certainty factor of 100 is placed

before rules with the same conclusion with a lesser certainty factor.

Altering the Trace

Until this last phase, the trace mechanisms were relatively simple.

Whenever an OAV was solved, it was asserted into the Prolog database

along with how it was solved. When the end-user requested a trace

output, the asserted OAV triples were retracted in reverse sequence from

that in which they were asserted. Retracted along with OAV triples were

the reasons for their assertions. The OAV triples along with their

reasons for their assertion were processed through a simple procedure and

an output was displayed which indicated the path between the solution and

the goal.

7-5

Using certainty factors, the "how" trace had to be altered

dramatically. Because ABC uses its "how" trace as a cache to determine

if OAV triples have already been previously solved, duplicates of

asserted OAV triples had to be prevented. Without preventing duplicates

in the "how" trace, an OAV triple could be asserted more than once, each

assertion with a different certainty factor, providing erroneous

conclusions to a goal.

More importantly, when the inferencing engine of ABC was adapted for

inexact reasoning, it acquired the new responsibility of producing

multiple solutions and thus multiple solution paths. The "how" trace

mechanism had to be altered to ensure that only those OAV triples which

were actually in a valid solution path were retained in the trace. The

"how" trace is managed by two predicates: 'assert in trace' and

'clean up trace'.

The 'assert in trace' predicate kept the "how" trace free of

redundant OAV triples by checking for existence of triples prior to

inserting them into the trace. When OAV triples were found to already

exist in the trace, the 'assert in trace' recalculated the certainty

factor of the previous asserted triple and replaced it with the new

certainty factor. This certainty factor replacement was accomplished

through the use of the 'replacetrace' and 'circulatetrace' predicates.

The 'clean up trace' predicate has the function of discarding all

OAV assertions in the trace which do not ultimately lead to a successful

solution. It accomplishes this task by checking each assertion in the

trace and making sure that the assertion made before it is either a goal

or relevant to the current assertion.

7-6

0

VIII. TestinABC

This chapter will discuss how ABC was tested. The first section

explains how the testing of individual predicates, the hierarchical

*building blocks of ABC, was implemented. The following section covers

the results of testing ABC against prewritten knowledge bases.

Testing ABC Predicates. ABC comprises approximately seven dozen

Prolog predicates. All but a half dozen of these predicates had to be

uniquely coded for ABC. Whenever a small group of related predicates

was written, a series of tests was run to see if each of the predicates

operated within the constraints of its design. These tests varied

widely, mainly depending on the complexity of the predicates' function.

Each predicate, upon passing its tests, was documented with a

0description of its function along with any constraints imposed upon the

predicate or its arguments. Refer to appendices B, D, or E for specific

information on any predicate in ABC. Each predicate which has an arity

greater than zero has an argument constraint parameter associated with

each of its arguments. These argument constraint parameters follow an

easy-to-understand notation.

The constraint parameter notation was needed to provide information

about whether a predicate's arguments are required to be instantiated or

not instantiated. No industry standard seems to exists for such a

notation, yet there is fair acceptance by Prolog programmers using Arity

Prolog or Quintus Prolog on the notation illustrated in Figure 8-1; as an

example, this notation is applied to the predicates 'execute', 'member',

and 'get rest word'.

8-1

0

execute(+)

member(?,?)

get_rest_word(+,+,-,-)

Figure 8-1: Prolog Predicate Notation

The meaning of the notation in Figure 8-1 is straightforward. The

"plus" symbol, representing the single argument in the 'execute'

predicate, indicates that the argument has to be instantiated in order

for the predicate to work correctly. In a like manner, a "negative"

symbol represents that the argument is required to be an uninstantiated

• variable. The third symbol, the "question mark", indicates that the

argument can be either instantiated or not instantiated and would work

correctly under both conditions.

* There are several other constraints which may be imposed upon a

predicate's argument. Whenever a predicate requires its argument to be a

list or an integer, this requirement will be listed in the source code

documentation as a constraint.

Constraints which are not complied with may result in erratic

behavior or system error messages. ABC predicates were coded wherever

possible to prevent a system error or erratic behavior when faulty

information is entered by the user. However, standard Prolog does not

have the flexibility of Ada or other such languages to handle error

* exceptions (Standard Prolog predicates are listed in Appendix I).

8-2

An example of when a system error would occur is when ABC prompts

the user for either a filename, or for whether the working memory or

auxiliary files should be loaded. If the specific file cannot be found,

a system error will be generated. Standard Prolog does not have the

facilities to prevent this type of error.

Testing ABC Using Prevritten Knovledge Bases

As previously mentioned, the specification of ABC takes the form of

a user's manual. To supplement the requirements of the user's manual,

two knowledge bases, called "pets.kb" and "vine.kb" (see Appendices F and

G), were developed from the instructions given in the user's manual.

These two knowledge bases were designed in advance to verify ABC's

ability to integrate OAV triples with frames and to deal with

uncertainties. The successful execution of the "pets.kb" knowledge base

also demonstrated ABC's capability of frame inheritance and demon

procedures.

The user-interface was never tested in any quantitative manner, but

it was presented to the sponsor for approval under the rapid prototyping

methodology as explained earlier in Chapter I.

8-3

Il. Conclusions and Recommendations

This thesis succeeded in developing an expert system shell which

integrated OAV triples into frames. Not only did it provide a working

expert system shell, but more importantly, it provided insight into

making several significant enhancements. These enhancements, if

implemented, would increase the capabilities of the expert system shell

developed in this thesis and as a side effect, make it more efficient and

user friendly.

This chapter will briefly summarize the thesis and then provide an

assessment of the ABC expert system shell. It will then cover several

relevant aspects of the design and implementation process which, for

better or worse, shaped this thesis. The chapter will conclude by

discussing recommendations for future improvements.

Sumnar

This thesis investigated how to develop an expert system shell which

integrated object-attribute-value (OAV) triples with frames and

implemented the shell entirely in standard Prolog. Rather than starting

from scratch, the approach used in this thesis was to study and expand

upon an existing educational expert system shell called BC3. BC3 was

chosen because it was an educational expert system shell which symbolized

its knowledge in OAV triples. Once the decision to expand upon BC3 was

made, the thesis was divided into four phases.

9-1

In phase one, the functions of BC3 were studied to determine BC3's

strengths and weaknesses. This phase also provided a period of time to

get better acquainted with Prolog. It was during this phase that the

reasoning mechanism in BC3 was altered to make it more efficient.

Additionally, the "why" and "how" trace mechanisms of BC3 were modified

to provide measurable improvements.

Phase two investigated different approaches to creating a user

interface for an expert system shell. In this phase, two predicates were

created which eliminated the requirement to enter data in the form of a

Prolog structure. More importantly, a command line scheme similar to

Teknowledge's M.1 expert system shell was implemented to modularize the

top level of ABC into functional divisions. This phase was also where

several predicates were created to make a knowledge base more "English-

like" in order for it to be easier to create and maintain. Additionally,

it was during this phase that the prompts generated from ABC askables

were customized and the valid replies to an askable were enumerated.

These additions not only enhance the look of ABC but also make the

questions more understandable and the answering process more

studentproof.

Phase three investigated how to integrate frames, including demon

procedures, into an expert system shell symbolizing its knowledge with

OAV triples. The method implemented in ABC uses the frame's name to

represent an object, the slot's name to represent an attribute, and the

slot's value to represent a list of all values which the object-attribute

pair can take on. Additionally, predicates to do the fundamental frame-

base maintenance were created.

9-2

0

Phase four investigated inexact reasoning techniques and integratel

* the capability of inexact reasoning into ABC with the use of certainty

factors. The inferencing mechanism had to be altered during this phase

from previous phases to permit multiple solutions.

Assessment

Several conclusions were drawn from this thesis effort. The first

conclusion was that Prolog makes a very good rapid prototyping tool. It

lends itself to both bottom-up or top-down development fairly easy.

Prolog is weak in the area of Input/Output (I/O) but was otherwise

ideally suited for this thesis effort.

Secondly, I discovered some pitfalls in using the rapid prototyping

methodology. Step two of the rapid prototyping methodology requires the

task to be divided into subtasks. The creation of subtasks in developing

ABC was straightforward and natural. However, the order in which these

subtasks were undertaken -- reviewing BC3, developing a user-interface,

integrating frames, and integrating certainty factors -- was a major

mistake and made the rapid prototyping methodology appear inappropriate

during the developme it of the last subtask.

The integration of OAV triples and a simple frame-base

representation was very natural. This was expected to be the hardest of

the four subtasks before the thesis had begun but was in retrospect, the

easiest of the subtasks to complete. In contrast, implementing

certainty factors was initially thought to be the simplest task and was

definitely the most difficult to implement. The implementation of

certainty factors required ABC to do considerable amounts of

9-3

backtracking. Until the implementation of certainty factors, ABC was

written to perform very efficiently without backtracking. Thus the last

subtask, implementing certainty factors, required a major revision of the

code written in the previous two phases of implementation.

Recomendations

All of the recommendations can fit into two main categories: quick

fixes and long-term enhancements. Most of the quick fixes are items

which the author intended to place into ABC but, because of time

constraints, could not implement. The long-term enhancements are a

result of knowledge learned during the span of this thesis effort. These

enhancements can provide significant flexibility and power to ABC and

should be implemented as soon as possible.

Quick Fixes. Currently, ABC will continue searching for solutions

until it finds a solution with a certainty factor of 100 or until it

search paths are exhausted. This is fairly inefficient and can be

corrected by a combination of two features. The first of the two

features needed is a 'multivalued' predicate similar to the one found in

M.1. The 'multivalued' predicate should prevent search for additional

solutions to a goal unless the goal is specifically declared to have

multiple values. The second feature needed is to prevent ABC from

searching for additional solutions if it finds a solution with a

certainty factor slightly less than 100, possibly 90 or 95.

Implementation of these two features would greatly enhance ABC's

efficiency when dealing with uncertainties.

9-4

Even though all of the tests which were run against ABC did so

flawlessly, it is recommended that ABC be tested with several students

from the introductory AI course. This type of testing would assist in

getting any ambiguities out of the user's manual along with removing any

remaining bugs in the program itself.

Long-Term Enhancements. ABC stores facts, frames, rules, and

askables in the Prolog database using different structures. In addition,

* OAV triples can be confirmed or denied. Having all of these structures

is inefficient. There are only three structures needed: one for OAV

triples which can be asserted (facts, frames, confirmed triples, etc.), a

* second structure for rules, and a third structure for an askabip.

Furthermore, if the first structure for assertables were structured as

shown in Figure 9-1, there would be several major side benefits.

assertable(Obj, Attr, Val, CF, [* 1, [** I, [*** I)

• * is a list indicating the reason for the triple's
assertion along with the certainty factor
associated with that reason.

• * is a list of facets or attributes

* *** is an explanation of the OAV triple to be used

with the explanation facility.

* Figure 9-1: Recommended Structure of ABC Assertable

With the implementation of the structure change recommended in the

* above paragraph and shown in Figure 9-1, the trace mechanism can be

9-5

greatly simplified and enhanced. The trace mechanism can use the reason

for a triple's assertion, the first list, as a pointer, pointing to the

next assertion which needs explaining. Both M.1 and GoldVorks use a

pointer technique in their explanation facility. Additionally, if

explanatory text is provided, it can be presented to the end-user adding

another dimension of user-friendliness to the expert system shell.

Each frame, when read by the expert system shell, can be decomposed

with each slot and associated slot-values and slot-attributes being

asserted as an ABC assertable (See Figure 9-1). This is similar to how

GoldWorks handles its frames (13:75).

This structure would support such future enhancements as retracting

assertables whenever their reason for being asserted is retracted. This

feature would be invaluable if a shell for nonmonotonic reasoning were

needed.

The next long-term enhancement would be to include additional on-

line help and edit facilities to both the end-user and the expert system

developer. The developer should be able to edit any part of the

knowledge base from the ABC prompt.

The last long-term enhancement would be to use the Arity Prolog

compiler and compile ABC. This enhancement would have several immediate

benefits. Using Arity's superset of standard Prolog, 30 to 40 percent of

the source code could be deleted. Additionally, Arity Prolog supports a

string type which is much more efficient than using standard Prolog

lists. Windows could quickly be added to further enhance the user's

interface. Lastly, the code will be in an executable form with AFIT as

the sole owner of the data rights. This would allow ABC to be

9-6

distributed freely, to run on any number of machines available at AFIT

* and throughout the Air Force.

9-7

0

Bibliography

1. Amsterdam, Jonathan. "Building a Flexible Knowledge Representation
Scheme" AI Expert, Vol. 1, No. 11: 19-22 (November 1986).

2. Barr, A. et al. The Handbook of Artificial Intelligence, Volume 1.
Los Altos CA: William Kaufman Publishing Co., 1982.

3. Bratko, Ivan. Prolog Programming For Artificial Intelligence.
Wokingham England: Addison-Wesley Publishing Co., 1986.

4. Buchanan, Bruce G. and Edvard H. Shortliffe. Rule-Based Expert
Systems. Reading MA: Addison-Wesley Publishing Co., 1984.

5. Clocksin, William F. and C. S. Hellish. Programming in Prolog.
Berlin: Springer-Verlag, 1981.

6. Cuadrado, J.L. and C.Y. Cuadrado. "AI in Computer Vision,"
* BYTE, Vol. 11, No. 1: 237-258 (January 1986).

7. Fikes, Richard and Tom Kehler. "The Role of Frame-Based
Representation in Reasoning," Communications of the ACM, Vol. 28,
No. 9: 904-920 (September 1985).

* 8. Frenzel, Louis E., Jr,. Understanding Expert Systems.
Indianapolis IN: Howard W. Sams and Co., 1987.

9. GoldWorks. Expert System User's Guide Version 1.0. Gold Hill
Computers, Inc., Cambridge, MA, April 1987.

• 10. Hardy, Steve. "Re : Knowledge Representations and Prolog".
Electronic Message. 23253@teknowledge-vaxc.ARPA, 17 Jun 88.

11. Hu, David. Programmer's Reference Guide to Expert Systems.
Indianapolis IN: Howard W. Sams and Co., 1987.

* 12. KEE. Interface Reference Manual K3.1-IRM-1. Intellicorp Inc.,
USA, 1987.

13. Levine, Ken. "The Age of GoldWorks," PC TECH Journal, Vol. 6,
No. 5: 68-81 (May 1988).

• 14. M.I. Training Materials Manual MI-020-3001-04. Teknowledge Inc.,
Palto Alto, CA, 1984.

15. Marcus, Claudia. Prolog Programming. Reading MA: Addison-Wesley
Publishing Co., 1986.

* 16. Mishkoff, Henry C. Understanding Artificial Intelligence.
Indianapolis IN: Howard V. Sams and Co., 1985.

BIB-1

17. Partridge, D. Artificial Intelligence Applications in the Future of
Software Engineering. Chichester England: Ellis Horvood Ltd., 1986.

18. Personal Consultant Plus. User's Manual 2539262-0001. Texas
Instruments Inc., Austin, TX, 1986.

19. Pressman, Roger S. Softvare Engineering. Nev York: McGrav-Hill Book
Co., 1987.

20. Tanimoto, Steven L. The Elements of Artificial Intelligence.
Rockville MD: Computer Science Press, Inc., 1987.

21. Walker, Adrian et al. Knovledge Systems and Prolog. Reading HA:
Addison-Wesley Publishing Co., 1987.

22. Waterman, Donald A. A Guide to Expert Systems. Reading MA:
Addison-Wesley Publishing Co., 1986.

BIB-2

, S

APPENDIX A

The Original BC3.PRO Expert System Shell

This appendix contains the expert system shell BC3 as it was

originally written before this thesis effort. It is this shell in

which ABC takes its roots. BC3 has several good features: the ability

to explain its conclusion, the ability to inquire about a prompt which

it makes, and the ability to mix Prolog code within BC3 code when

appropriate. However, BC3 does have some drawbacks. It does not have

a frame representation language or the inferencing mechanism to extract

knowledge from frames. It doesn't have the capability to deal with

incomplete or uncertain knowledge. It can only deal with production

rules which look like the following example.

rule_1: if (Whoever, saves-their, money] and
[Whoever, studies, hard] or
[Whoever, hasa, rich_daddy]

then [Whoever, can__go_to, college].

It also has the facilities to store facts and "askables." Askables are

Object-Attribute-Value (OAV) triples which have to be completed or

confirmed by prompting the user for input. Askables are similar in

nature to meta-rules in M.l.

A-i

1* *I

/* BC3 */
/ * */

I* A shell for backward-chaining expert systems. *I
/* */

/* Each item of knowledge is represented by a triple (i.e., *I
/* a three-element list of the form [Object,Attribute,Value]. *I
/* An associated rule-base supplies the following data: */

* /* *1

/* 1. A goals-statement, in the form of a list of triples to *I
/* be solved in sequence. The solved triples are printed */
/* by the shell. */
I* 2. A collection of if-then rules for triples. *1
/* 3. A collection of facts, i.e., triples asserted as known */
/* a priori. */
/* 4. A collection of 'askable' triples, indicating the forms */
I* of triples whose values may be obtained from the user. */
/* 5. A collection of 'keep' triples, indicating the form of */

the triples not to be erased from working memory at */
I* the beginning of a new session. */
/ * */

/* Each item of knowledge stored in working memory is of the */
/* form confirmed([Obj,Attr,Val]) or denied([Obj,Attr,Val]). */

/* ,/

/* To use the system, load BC3, load the appropriate rule- */
/* base and type 'start.' Because BC3's operator-defini- */
/* tions are used by the rule-bases, BC3 must load first. */
/* ,/

/* ------------------- OPERATOR DEFINITIONS -------------------- *
/* ,

/* The operators defined below enable the rules in the know- *
/* ledge-base to be expressed in a form more readable than */
/* the standard (prefix) form. *1

/* ,/

* -- *

?- op(250, xfx, :).
?- op(245, xfx, then).
?- op(240, fx, if).
?- op(235, xfx, derived from).
7- op(230, xfy, or).
?- op(225, xfy, and).

A-2

/* START ------------------------- */
I* *I

* /* The procedure 'start' begins by erasing from working mem- */
/* ory all 'confirmed' and 'denied' clauses, except those */
/* clauses protected by 'keep' from erasure. The list of
/* goal-triples is then read from the rule-base and solved in */
/* turn by 'solve'. A trace is maintained of the back-
/* chaining search-tree generated in solving the goals. When */

* /* the last of the goal-triples is solved, the values of all */
/* goals, except those solved by asking the user directly,
/* are displayed; the trace is also displayed, if requested, */
/* as a "how" explanation of the solution. */

/*--*

start
ask about loading _wm, /* Erase all working-mem- */
(conflrmed(Triple), /* ory elements not pro- */
not(keep:Triple), /* tected by 'keep' state-*/
retract(confirmed(Triple)) /* ments in the knowledge-*/

* ; /* base. */

denied(Triple),
not(keep:Triple),
retract(denied(Triple))),

fail.

start :-
retractall(whytrace(_)), /* Erase the "why" trace. */
goals: Goals, /* Find the goal-triples, */
prefix(Goals,Prefixed_goals), /* prefix each of them */
reverse(Prefixed_goals,Goal_lIst), /* with the word 'goal', */

/* & reverse their order. *1
solve(Goals,[],Part trace), /* Satisfy all of the */

1,nl, /* goals and then put the */
append(Goal_list,Parttrace,Trace),

/* list of goals at the */
/* front of the "how" *1

ask about trace(Trace), /* trace. Supply a "how" *f
ask-about-saving_wm. /* explanation on request.*/

start :- /* If all triples can't */
nl, /* be solved, announce it.*/
write('I can"t solve this problem.'),nl.

A-3

0

/* -- SOLVE -*I
/* *1

/* The predicate 'solve(Goals,TraceNev trace)' means that *I
* /* Goals is a list of goals (expressed as triples), and that */

/* Trace and New trace are, respectively, the trace-lists be- */
/* and after solution of the goal at the head of the goal- */
/* list. The procedure 'solve' solves each of the goals in */
/* turn. The first step in solving a goal is to erase the */
/* "why" trace and to initialize it with that goal. Thus each *1

* /* goal is solved with a separate "why" trace. As each rule *I
/* is encountered in descending through the search-tree for a */
/* given goal, that rule is added to the front of the "why" */
/* trace. */
I**1
/*--*

solve([j,Trace,Trace).
solve([GoallOthers],Trace,Nev trace)

retract all(whytrace()), /* Initialize the "why" *1
asserta(why_trace([goal:Goal)), /* trace. */
is known(Goal,Trace,Tracel),
(confirmed(Goal),! /* Write each triple as ,1

1* it's solved, but don't "1
nl,writetriple(Goal),nl), I* write a triple that's *I

solve(Others,Tracel,Nevtrace). /* been told explicitly */
/* by the user. "1

write triple([Obj,Attr,ValJ) :-
writelist([Obj,' ',Attr,' ',Val,'.'J).

ask about trace(Trace) :-
write('Do you wish to see how this answer was arrived at? '),
read(Reply),
(means(Reply,yes), t,
write-trace(Trace)

true).

ask aboutloading wm
vrite('Do you wish to load from a working-memory file? '),
read(Reply),nl,
(Reply = y,

load working memory, I

true).

A-4

ask -about-saving win
vrite('Do you wish to save working memory in a file?')
read(Reply) ,nl,

0 (Reply =y
save-working_memory,I

true).

prefix([),[]).
prefix([GoalIGoalsJ,[goal:GoallPrefixed Goalsi) :

prefix(Goals,PrefixedGoals).

/* -------------------------- ISKNOWN --------------------------1

/* The 'is -known' procedure maintains a trace of the path of *
/* the solution-tree leading to the triple currently under *
/* consideration. 'is known(Trlple,Trace,Nev trace), means *
/* that if reasoning to a certain point has b6een recorded in *
/* the list 'Trace', then the additional triple 'Triple' is *
/* known via reasoning recorded by the list 'New-trace'. *

/*---*

/* A triple is not known if it has been denied by the user. *

is known(Triple,Trace,Trace)
* denied(Triple),

1,
fall.

/* An 0-A-V triple is known if it is a fact in the rule base. *

* is known([O,A,VJ,Trace,Trace)
member(fact: [O,A,Vj ,Trace),
1.

is known([O,A,VI,Trace,(fact:tO,A,VIITraceI)
fact: I0,A,VJ,

/* A triple is known if it has been confirmed by the user. *

is known(Trlple,Trace,Trace) :-

member(was-told:Triple,Trace),

is known(Triple,Trace,[was told:TriplelTracej)

confirmed(Triple),

A-5

/* A triple [X,P,YJ is known if the Prolog goal P(X,Y) suc- */
/* ceeds, either because P is a built-in predicate, or because *1
/* the rule-base has prolog-code defining P. The triple */
/* [2,member,f1,211, for example, is converted into the goal */
/* member(X,[1,2]), which is then executed by Prolog. To keep *1
/* non-Prolog-programmers out of trouble, the triple [X,is,Yj *1
/* is trapped so that it will not be executed as an arithmetic */
/* statement. The triple [X,=,Y] is interpreted as the Prolog *1
/* goal X isY. */

is known([Obj,Attr,Vall,Trace,Trace)
member(solved:[Obj,Attr,Val],Trace),

is knovn([Obj,Attr,Val],Trace,[solved:[Obj,Attr,ValIITrace])
* not (Attr == is), /* We don't want 'is' to be inter- */

T ... (Attr,Obj,Val], /* preted arithmetically. *1
T,

is known([Obj,=,Val],Trace,[solved:[Obj,=,ValIlTrace])
* Obj is Val. /* Interpret '=' as Prolog's 'is' */

/* predicate. */

/* A triple is known if it is the head of a rule and the con- */
/* ditions of the rule are satisfied. We put a rule that we */
/* encounter at the head of the "why" trace, erasing any du- */

* /* plicates of the rule that are already in the "why" trace. */
/* The "why" trace is maintained in the database, in a clause */
/* of the form 'vhy_trace(<List of goals and rules>)'. This */
/* differs from the "how" trace, which is handed as an argu- */
/* ment from goal to goal. */

isknovn(Triple,Trace,[was_proved:[Triple,Rule]lTracel) :-
member(Rule: Triple derived-from Conds,Trace),
I.

is known(Trpl,Trc,[Rule: Trpl derived-from CondslTrcl])
Rule: if Conds then Trpl,

* /*

TAKE OUT CODE ACCESSING THE WHY-EXPLANATION
whytrace(Why trace),
remove(Rule: Trpl derived from Conds,Whytrace,Partwhy),
append([Rule: Trpl derived_from Condsj,Part_why,Newwhy),
retract(why trace(_)),
a~serta(why trace(Nevwhy)),

*/

is known(Conds,Trc,Trcl),
I.

/* A condition involving "and", "or", or "ncc" is known if its
/* parts are known in suitable combinations. */

A-6

is knovn(Triplesl and Triples2,Trace,Trace2) :

is -knovn(Triplesl,Trace,Tracel),
is-knovn(Triples2,Tracel,Trace2).

is known(Triplesl or Triples2,Trace,Tracel) :

is knovn(Triplesl ,Trace,Tracel).
is knovn(Triplesl or Triples2,Trace,Trace2) :

is knovn(Triples2,Trace,Trace2).

0is knovn(not Triple,Trace,iconfirmed -not:TriplelTraceJ) :

not is-known(Triple,Trace,Tracel).

/* A triple is known if (a) the rule-base classifies it as *
1* "askable" and if (b) the user confirms it. The user may *
/* request a "why" explanation before responding to the ques- *

S 1* tion. *

is knownU[O,A,VI,Trace,Trace) :

member(was_told:IO,A,VI,Trace),

0 is knovn([O,A,V,Trace,[was_told:(O,A,VIITraceJ):-
askable: 10,A,] ,
ask-about((O,A,Vj),

confirmed(IO,A,VI).

** *------------------------- ASK-ABOUT ------------------------- *

ask-about(fObj,Attr,ValJ):-
var(Val),
1, nl,
writelist((Obj,' ',Attr,'? '1),n',

*askable: jObj,Attr,Legal -values),
write('Legal values: '), write(Legal_values), nl,
write('> '), read(Reply),

means(Reply,why), /* If the user responds *
explain_why(iObj,Attr,ValI), /* with 'why.', give him *

* !, /* an explanation. *
ask about([Obj,Attr,ValJ)

atomic(Legal-values)

* member(Reply,Legal-values)

assertz(confirmed([Obj ,Attr,ReplyJ))

write('Please re-enter your reply.'),nl,
ask aboutU(Obi,Attr,Valj)

A-7

ask about(IObj,Attr,ValI)
ni,
writelistQ[Obj,' ' ,Attr,' ' ,Val,'? (yes./no./why.)' j),
nl,vrite('> '),read(Reply),

means (Reply ,yes)
assertz(confirmed(IObj,Attr,ValI)), I

means (Reply ,no),
assertz(denied(tObj,Attr,ValI)), I

means(Reply, why),
explain_vhy([Obj,Attr,ValJ),

ask-about([Obj,Attr,ValJ)

write('Please re-enter your reply.'),nl,

ask about(IObj,Attr,ValJ)

means(Reply,yes)
member(Reply, jy,yesJ).

means(Reply,no) :
member(Reply, [n,noJ).

means(Reply,why) :
member(Reply, (why,wJ).

/* ------------------------ EXPLAIN-WHY ------------------------ *

explain why(Triple) :
why-trace(Why_trace),
write('Because: '),
justify(Triple,Why_trace).

justify(Triple,Why trace) :
member(goal:Goal,Why-trace),
Triple = Goal,
writelist(I'Thls will satisfy the goal ',GoalJ),nl,
nl,
1.

justify(Triple,Why -trace) :

member(R:Head derived-from Cs,Why-trace),
among(Triple,Cs),
remove(R:Head derived -from Cs,Vhy trace,New-trace),
writelist(t'I can use 1,Triplej),nl,
list known triples(Cs),
writelist(f' to help satisfy ',R,': ',Headj),nl,nl,
justify(Head,Nev-trace).

A-8

list -known_ triples(Cs) :

among(Triple,Cs),

confirmed(Triple)

fact: Triple

writelist(I' knowing ',Triplej),nl,
fail.

list-known-triples(_).

among(Triple,Conditions)
Triple = 6onditions.

among(Triple, First_triple and Other-conditions)
Triple = First triple,!

among(Triple,Other -conditions).
among(Triple, First_triple or other-conditions)

Triple = First triple,!

among(Triple,Other-conditions).

/* ------------------------- WRITETRACE ------------------------ 1

write trace(IJ)
nl.

* write-trace(igoal:TripleiResti)

write('GOAL: '),write(Triple),nl,
write trace(Rest).

write-trace(fIfact:TriplejRest))
IV

*write('FACT: '),write(Triple),nl,
write trace(Rest).

write-trace(Isolved:TriplelRestl)

write('SOLVED: '),write(Triple),nl,
write trace(Rest).

write-trace([was-told:TriplelRestj)
1,
wri te('TOLD: '),vri te(Triple) ,nl,
write trace(Rest).

write-trace(rconfirmed-not:TriplelRestl)
I ,

* write('CONTRADICTED: '),write(Triple),nl,
write_ trace(Rest).

write_ trace([wasproved:Triple,RuleJIRestJ)):

write('PROVED: '),write(Triple),write(' USING '),write(Rule),nl,
write_ trace(Rest).

* write trace([Rule: Triple derived-from ConditionsIRest J)

A-9

writelist([Rule,': ',Triple,' Was Derived From'J),nl,
write conditions(Conditions),

* write-trace(Rest).
write_trace(tXIRestI) :

write(X) ,nl,
write-trace(Rest).

write conditions([X,Y,ZJ)
* tabT8),write(jX,Y,Zj),nl.

write conditions(not (X,Y,ZI)
tabT4),write('NOT '),write(jX,Y,Zj),nl.

write conditions(!X,Y,Z] and Conditions)
tab(8),write([X,Y,Z]),wrlte(' AND'),nl,
write conditlons(Conditlons).

* write conditions(not [X,Y,ZJ and Conditions)
tabT4),write('NOT '),write(IX,Y,ZI),write(' AND'),nl,
write conditions(Conditions).

write-conditions(fX,Y,Zi or Conditions)

tab(B),writeQjX,Y,ZJ),wrlte(' OR'),nl,
*write conditions(Conditlons).

write conditions(Conditionsl or Conditions2)
write conditlons(Conditionsl),tab(8),write('OR'),nl,
write conditions(Conditions2).

write conditions(not [X,Y,ZJ or Conditions) :

tab(4),write('NOT '),write([X,Y,ZI),write(' OR'),nl,
* write conditions(Conditions).

/* ------------------------- FILE 1/0----------------------------*

save working memory :
write('Please supply a filename: '),

* read(Filename),nl,
tell(Filename),
save-wine,
told.

save wine
* confirmed(Triple),

wrlteq(confirmed(Trlple)).write(' .'),nl,
fail.

save vine
denied(Triple),
wrlteq(denied(Triple)) ,wri te(' *') ,nl,

* fail.
save wine.

A- 10

load working memory :

write('Please supply a filename:')
* read(Filename),nl,

retract -all(confirmed(-)),
retract -all(denied(_)),
see(Filename),
loadfile,
vrite('Contents of working memory:'),nl,nl,

*list -working-memory,
seen.

loadflle :

read(Term),
load (Term).

load(end-of-file)
1.

load(Term)
not Term .. [confirmed,_,
not Term .. [denied,J_,

write('Not a legal file of working-memory elements. .'),nl,nl,
retract -all(conflrmed(_)),
retract all(denied(_)).

load(Term) :
assertz(Term),

* loadfile.

list -working_memory :

conflrmed(Triple),
write(conflrmed(Triple)),write(' .'),nl,
fail.

*list -working memory
deied(Triple),
write(denied(Triple)),write(' .'),nl,
fall.

list-working-memory.

/* -------------------- UTILITY PROCEDURES-----------

writelist([I).
writelist(IXILI) :

write(X),
* writellst(L).

member(X,[XI _).
member(X,f _ LI)

member(X, L).

A-11

append([],L,L).
appendUIXlLJ,H,LXINI)

* append(L,M,N).

reverse(I ,II.
revterse([XILJ,M) :

reverse(L,N),
append(N, (XJ,M).

remove(_IJI)
remove(X,[XILI,M) :

1,

remove(X,L,H).
remove(X,[YILI,IYIMJ)

* remove(X,L,M).

retract all(X) :
not not retract(X),
retract all(X).

retract all(X) :-
not not retract((X Y)),
retract all(X).

retract-all(_).

wa :-
listing(confirmed),
listing(denied).

reset :-
retract all(confirmed(_)
retract-all(denied(_)).

again :-
vrite('Consulting bc3.pro'),nl,
reconsult('bc3. pro').

vhy :-
why_trace(Trace),
write-trace(Trace).

?write('Type ''start.'' to begin.'),nl,nl,
write('Ansver all questions using lower case,'),nl,
write('ending with a period.'),nl.

A-12

/* *1

/* ABC - AFIT Backward Chainer Version One */
I* 04 Oct 88 *I
/* */

/* ABC is an expert system shell written entirely in Clocksin and *I
/* Mellish Prolog. It reasons with a backward inference engine and */
I* a forward reasoning mechanism called "initial askable." It uses */
/* production rules and frames for its knowledge representation. */
/* The production rules are made up of Object-Attribute-Value (OAV) */
/* triples representing relationships that an object may have. OAV */
I* triples were used in MYCIN. The frame structure is simple but *I
/* effective for smaller knowledge bases. The frames allow hier- *I
/* archical inheritance of values. Also, the frame language */
I* provides the use of demons for slots which are designated as *I
/* "if needed, if added, or if removed." Additionally, ABC has the */
/* ability to deal with uncertain knowledge via its use of certainty */
/* factors, CFs. *I
I* *I

/* --------------------- Operator Definitions ------------------------- *

op(990, xfx, =).
op(980, xfy, :).
op(975, xfx, then).
op(970, xfy, slot).
op(970, fx, if).
op(965, xfx, derivedfrom).

:- op(960, xfy, or).
op(955, xfy, and).

:- op(950, xfx, cf).

* ------------------------- Start Predicate -------------------------- *
f* *

/* The start predicate "initiates" the database and keeps subsequent *I
/* operations in an infinite loop via the repeat/O and execute/i */
/* predicates. This loop prompts the user for an ABC command. Each */
/* of these commands will ultimately fail (except "quit") causing */

* /* backtracking to the repeat predicate where the cycle repeats with */
/* another prompt. There are dozens of ABC commands which, relative */
/* to the start predicate, work on the principle of "side-effects." */
/* The start predicate is called by the Prolog interpreter upon *1
/* consulting the ABC shell. You may exit the ABC shell by typing */
/* "quit." at the ABC prompt. */

*/, */

/* Constraints: None

0

start :- /* ABC initiates itself by clearing */
cls, /* the screen and displaying its intro */
display_introscreen, /* screen. It also restores the know- */
restore kb, /* ledge base. It then goes into its */
nl,nl, /* loop of executing an ABC command, */
repeat, /* failing, repeating its prompt, *1
nl,nl, /* executing the next command, etc */
write('ABC > '), /* until the ABC quit command is seen. */
readline([],Reply),
execute(Reply).

/* ------------------------ displayintroscreen ----------------------*
I* */

/* The display_intro_screen predicate simply displays the intro- */
/* ductory message on the CRT. */

I* *I

/* Constraints: None */

display intro screen
put(7),
nl,nl,nl,
tab(27),
write('ABC - AFIT Backward Chainer'),
nl, tab(28),
write('Version 1.0 - 27 Sep 88'),
nl,nl,nl,
rules.

/* -------------------------- rules Predicate -------------------------*
I* ,I

/* The rules predicate displays the syntactical rules which must be */
/* obeyed throughout any consultation with ABC in order for it */
/* to operate correctly. The ABC command "rules" also calls this */

• /* this predicate so the user may view the syntax rules at any ABC */
/* prompt. */
I* *I

/* Constraints: None */

rules :-
nl,nl,tab(32),
write('ABC Syntax Rules'),
nl,tab(14),
write('=- - -- - -- - -- - -- - -

nl,nl, tab(14),
write('1. Always use lower case letters.'),

* nl,nl,tab(14),
write('2. Always enter in single words at command prompts.'),
nl,tab(14),
write(' (i.e. review-frame is a single word)'),
nl,nl,tab(14),
write('3. Always end your command with a <Return>.'),

* nl.

B-2

0

/* help-*-
1* *1

* 1* The ABC command called HELP is a single level screen display which *1
/* will aid the user as a memory assistant. Its function may be *1
/* altered to fit the needs of the intended user. The help command is */
/* just one of many Prolog rules which make up the "execute" predi- */
/* cate. The user must provide a valid ABC command at the ABC prompt *1
1* in order for the "execute" predicate to operate. If a non-valid *1

* I* command is provided, a beep followed by an error message will */
/* result. */
/* */

/* Constraints: execute(+) The command must be instantiated. */

execute(help)
* cls,

nl,nl,
tab(29),
write('ABC Online Help Display'),
nl, tab(1O),
write('),

* nl,nl, tab(10),
write('load <kb> Load a parsed/unparsed knowledge base'),
nl,nl, tab(lO),
write('remove kb Removes entire kb from Prolog database.'),
nl,nl, tab(lO),
write('consultation (go) Tries to find a solution to the goal'),

* nl,nl, tab(1O),
write('restore Restores working memory for new consultation'),
nl,nl, tab(lO),
write('quitLeave the ABC shell for the Prolog

interpreter'),
nl,

fail.

/* -------------------------------- quit ----------------------------- *
/* */

/* The ABC quit command is the only way to exit ABC in a normal way. *1

execute(quit).

/* -------------------------------- load ----------------------------- *

/* The load command will load in either a parsed ".abc" file or an *1
/* unparsed ".kb" file. The ".abc" files are read directly into the *1
/* memory. However, the ".kb" files have to be parsed and their *1
/* quoted triples converted to triples within lists. Additionally, */
/* the user is given the opportunity to load in a working memory file*/
/* which should contain all the frames, facts, and information */
/* learned from previous consultations. Last, the user is given the */
/* option of running a new consultation directly without going back */
/* to the ABC Executive.

B-3

/* Constraints: Filenames provided by the user must exist. System */
/* error warnings will be produced otherwise. */

execute(load)
cls,
nl,nl,
write('Enter the name of the file where your knowledge base is stored,

or'),
nl, write('enter <Return> to abort.'),
nl,nl,
write('Filename, including path is: '),
readline([],Filename),nl,
(Filename '',!,fail /* If user just pressed <ENTER>, then */

/* abort the load operation. */
true

nl,nl,nl,nl, /* If the filename has the extension *I
(check(Filename,abc), /* ".abc" then just load in the file */
write('Reading the knowledge base called '), /* using the pred- */
write(Filename), /* cate called "load abc /1". */
write('.'),

* nl,nl,
write('Please standby.'),
loadabc(Filename)

/* If the filename has the extension */
check(Filename,kb), /* ".kb" then its necessary to parse */
write('Reading and Parsing the knowledge base called '), /* the */

* write(Filename), /* knowledge base, generate the ".abc"*/
write('.'), /* file, and then read in the ".abc" */
nl,nl, /* file. This is accomplished by */
write('Please standby.'), /* using the "load kb /1" predicate. */
loadkb(Filename)

• write('File extension is incorrect. Load procedure aborted.'),
!, fail

/* If the file has the wrong extension*/
nl,nl,nl, /* then write an error message and */
write('Knowledge base '), /* abort the load procedure. */
write(Filename),

* write(' has been successfully read.'),
nl,nl,
write('Would you like to load in a working memory file? (<y>,n) '),
get_reply(Answer),
(Answer = yes, /* See if user wants to load working */

load_wm(Filename) /* memory. If reply is yes, then load */
• ; /* in working memory using the "load */

true /* wm" predicate, otherwise continue. */

nl,nl,

B-4

vrite('Would you like to load in an auxiliary file? (<y>,n) '),
getreply(Answr),
(Ansvr = yes, /* Likewise, see if the user wants to */
loadaux(Filename) /* load in an auxiliary file. If reply*/

/* is yes, load in the auxiliary file */
true /* using the "load aux /1" predicate. */

nl,nl,nl,
write('Would you like to start a consultation now? '),
get_reply(Reply),
(Reply = yes, /* Next see if the user wants to start*/
execute(consultation) /* a consultation with the knowledge */

/* base, assuming one is loaded. If */
true /* reply is yes, then start a consul- */

/* tation using the ABC command "con- */
* !, /* sultation". Either way, return to */
fail. /* the ABC prompt when finished. */

/* ------------------------ loadkb ---------------------------------- */* *I

/* load kb/i loads in an unparsed knowledge base, parses it, writes */
/* it to a file with the same prefix name, yet with a file extension */
/* of ".abc". This predicate will then read from the new ".abc" */
/* file, inserting terms into working memory as it reads them. */
/* ,/

/* Constraints: loadkb(+) */
/* The entire file name must be passed to loadkb, including the *I
/* path. Since this path/file name must be an atom, the path/file */
/* name must be surrounded by single quotes for proper operation.
/* Additionally, if the filename does not exist, the system will
/* produce an error message which may be impossible to recover from */
/* without rebooting the system and loosing your data.

load kb(Filename) .- /* The FULL filename (w/extension) */
check(Filename,kb), /* must be entered. If the extension */
1, /* is ".kb", then we read the file */
see(Filename), /* a term at a time, and */
convert filename(Filename,abc,NewFN), /* transform it to ".abc" */
tell(NevFN), /* format and write it out */
makefile, /* to a file with the same name but */
seen, /* with an extension of ".abc".
told, /* See the comments for convert file-*/
see(New FN), /* name, check, makefile, and
loadfile, /* loadfile for additional details. */
seen.

B-5

/* ------------------------ load abc -- */
I* *I

/* The load abc predicate simply reads in terms from the file which *I
/* the user provides the name for, and asserts the terms in the */
/* Frolog database.
I* *1

/* Constraints: The same constraints as load kb apply. */

load abc(Filename)
see(Filename),
loadfile,
seen.

/* -------------------------- loadw .-----------------------------*0I* *I

/* The load wm predicate takes the ".abc" or ".kb" knowledge base */
/* filename, creates a filename with the same prefix yet with an */
/* extension of ".wmn" and then searches the current drive for the */
/* file with that name. The file is then read in much like the ".kb"*/
/* files, parsed, read back to a temporary file called "abc.tmp" and */
/* then read in using the Prolog reader and asserted into the Prolog */
/* database. This is necessary to convert quoted triples to listed */
/* triples and to get the Prolog database to accept variables as */
/* variables instead of quoted atoms. */
/* */

/* Constraints: Basically the same as the "load kb" predicate. The */
/* system will produce an error if the working memory file does not */
/* exist. */

load_wm(KBFilename) :-
1,

convert filename(KB_Filename, wm, WMi_Filename),
see(WM Filename),
tell('ABC.THP'),
makefile,
seen,
told,
retract all(frame : Framename slot Slots),
retract all(confirmed(Triples)),
retract all(denied(Triples)), /* The old working memory is de- */
see('ABC.TMP'), /* stroyed when loading in a new */
loadfile, /* working memory. */
seen, 1.

B-6

/* ---------------------------- load aux- * /
1* */

/* The load aux predicate is used to load user-defined Prolog pred- */
* /* icates into the Prolog database. This includes the expert system */

/* developer's demons, if they exist.
I* *I

/* Constraints: load aux(+) */
/* The constraints for the load aux predicate are the same as the *1
/* "load im" predicate. An additional constraint imposed in the */

* /* "load-aux" predicate is that all OAV triples must be in the form */
/* of a Prolog list. */

loadaux(KBFilename) :-
1,

convert_filename(KB_Filename,aux,AuxFilename),
* see(Aux Filename),

loadfile,
seen, 1.

/* ------------------------- convert filename ------------------------/* ,/

* /* The convert filename predicate takes a filename and a new exten- *
/* sion and makes and returns a filename with the same prefix yet */
/* with the new extension. */
/* */

/* Constraints: convert filename(+,+,-)

* convert filename(KB_Filename, Ext, New_Filename)
atom(KB_Filename),
1,
parse name(KB Filename, ASCIIPRE, ASCIIEXT),
name(Ext,ASCII Ext),
append(ASCII PRE, [461ASCII_Ext], NewASCII),

* name(NewFilename, New_ASCII), 1.

/* ---------------------------- parsename ---------------------------*
/* */

/* The parse_name predicate takes an atom (which is usually a file- */
/* name) and divides it into two parts. The filename is parted into */

* /* two ASCII lists, one representing the filename's prefix and the */
/* other representing the filename's extension. */
/* */

/* Constraints: parsename(+,?,-) */

parsename(Old FN, ASCIIPRE, ASCIIEXT):-
* name(Old FN, ASCII List),

member(46, ASCIIList),

1,
append(ASCIIPRE, [461, TempList),
append(TempList, ASCII EXT, ASCIIList).

B-7

0

/* ------------------------------ makefile ----------------------------

/* The makefile predicate will read in a term from a file, parse the t/
* /* term and converts it so all quoted OAV triples are converted to */

/* OAV triples within a Prolog list and then write them back out to */
/* a second file. The term is read using the Prolog read predicate */
/* and the outputting to the new file is done via ABC's change */
/* predicate. The calling procedure is responsible for "seeing" and t/
/* "telling" the appropriate files. */

/* Constraints: The calling procedure must "see /1" a valid Prolog */
/* formatted file to read from and must also "tell /1" a file to open*/
/* a output file. Note that if this file already exists,"tell" will */
/* overwrite all old data in favor of the new data. t/

* makefile :-
read(Term),
change(Term).

/, ----------------------------- change ------------------------------ *

* /* The change predicate controls the changing of the term read from t/
/* the ".kb" format to the ".abc" format & writes the new format out t/
/* to the new file with the new extension. For purposes of recur- */
/* sive programming, it then calls makefile which will read another */
/* term and the process is then repeated.

* /* Constraints: change(+) */
/* Same constraints as the "makefile" predicate. t/

change(end_of file) :-
1.

* change(Term)
convert term(Term,NewTerm), /* Terms are parsed and converted via t/
write(NevTerm), /* ABC's "convert term /2" predicate. */
write('.'),
nl,
makefile.

B-8

/ * l o a d f i l e- .*
/* ,/

/* The loadfile predicate reads a term from and file and loads it in */
0 /* working memory with the use of the load predicate. The load pred-*/

/* icate actually asserts the term into the working memory and */
/* recursively calls loadfile until the end of file is seen and then */
/* terminates the loading process. This predicate is the same as in */
I* BC3. *I
/ * */

/* Constraints: The calling procedure must "see" a valid Prolog */
/* file. */

loadfile :-

read(Term),
load(Term).

/* ------------------------------- load ---------------------------- *
/* ,/

/* The load predicate asserts a term into the Prolog database and */
/* calls the ABC predicate "loadfile" until there is no more terms */
/* to load, at which time the "end of file" marker should be reached */
/* and the load predicate will simply succeed not allowing back- */
/* tracking. */
/* */

/* Constraints: load(+).
/* The ABC predicate "loadfile" must exist and its constraints met. */

load(end of file)
I.-

load(Term)
assertz(Term),
loadfile.

/* ----------------------------- load abc ---------------------------- *
/* ,/

/* The load abc predicate checks to see if the filename provided is */
/* an atom and then reconsults the file. */
/* *

• /* Constraints: loadabc(+). */
/* A valid filename must be provided as the input. */

load abc(Filename) :-

atom(Filename),
nl,nl,

* reconsult(Filename).

B-9

/*----------------------------- check --------------------------------- *
I* *

/* The check predicate checks a file name for the proper extension. */
/* If the extension of the filename provided is either ".kb" or *1
/* ".abc" the extension name is returned. Otherwise, the "check" *1
/* predicate fails. */
I* *I

/* Constraints: check(+,-). *1

check(File Name,Type)
atom(File Name),
name(File Name, ASCII List),
check extTASCIIList ,Type).

/* ---------------------------- check ext ---------------------------- *

/* The check ext predicate is used in conjunction with the "check" *1
/* predicate. The check ext tries to match the extension of a file */
/* name with either "kb"-or "abc" in the form of ASCII lists. */

/* */

/* Constraints: checkext(+,?). */
* /* The first argument must be a list. */

check ext([],[]) :- /* If the filename is empty then the */
1, /* predicate fails. */
fail.

check ext(1461T], kb) :- /* The extension is ".kb" is true if */
T = 1107,98], /* the filename's ASCII equivalent */

1. /* list ends with [46,107,981 */

check ext(1461T], abc) :- /* The extension ".abc" is true if */
T [97,98,991, /* the filename's ASCII equivalent */
I !. /* list ends with 146,97,98,99].

check ext([_[TJ,List) :- /* The extension hasn't been found */
check ext(T,List). /* yet, recursively check the rest of */

/* the filename for the extension. */

/* --------------------------- convert-term ----------------------------
/* *

/* convert term(A,B) converts the user friendly term to one in which */
/* the ABC ES shell can understand. The convert term predicate is */
/* used only on ABC data structures. It will eventually replace all */

* /* the single quoted triples such as 'amy loves john' to a list */
/* structure such as [amy,loves,john] which is what the inference */
/* mechanism of ABC requires. *1
/* *

/* Constraints: convertterm(+,-). *1
/* This predicate may not work unless altered on other than

* /* structures defined in ABC.

B-1O

convert term(A : B, A : C) :- /* A should be a key word *1
convert term(B, C), 1. /* such as fact, askable, *1

/* etc. We break down */
0 convert term(A then B, C then D) :- /* the term until it */

convert term(A, C), /* cannot be broken */
convert term(B, D), 1. /* down (until its an atom) */

/* any further. We token- */
convertterm(if A, if B) :- /* ize the atom which is a */

convertterm(A, B), I. /* O-A-V triple within sin- */
* /* gle quotes. The */

convertterm(A and B, C and D) :- /* output from this */
convertterm(A, C), /* step is the same */
convert term(B, D), I. /* basic term except all */

/* the O-A-V triples */
convertterm(A or B, C or D) :- /* in quotes are */

* convert term(A, C), /* replaced by O-A-V */
convert term(B, D), 1. /* triples in lists. */

convertterm(A slot B, C slot D)
convert_ term(A, C),
convertterm(B, D), I.

convert_ term(A derivedfrom B, C derivedfrom D)
convertterm(A, C),
convertterm(B, D), 1.

convertterm(not A, not B) :-
* convertterm(A, B), 1.

convert term(A, List) :- /* Here is where the atom */
atom(A), /* gets converted. It will */
name(A,OldList), /* only be converted if the *1
OldList = [FirstLetteriResti,

* (First Letter < 97, FirstLetter > 64 ; member(32,Rest)),

converttriple(OldLlst,List), I. /* atom is a Variable or if */
/* the atom has a space in */

convertterm(A,A). /* it somewhere. */

/* ------------------------- converttriple ------------------------
/, */

/* The converttriple predicate will parse through a quoted atom and */
/* tokenize the atom into a list of words. See the comments about */
/* the predicates "tokenize /3" and "get_restword /4" for more *1

* /* detailed explanation. */
/, */

/* Constraints: convert_ triple(+,-) *1
/* The first argument must be a list of ASCII numbers. */

convert triple(OldList, List) :-
* tokenize(OldLlst, (1, List).

B-11

S

/* -------------------------- tokenize-*I
1* *1

/* The tokenize predicate receives as an argument, a list of ASCII */
* /* numbers representing the O-A-V triple which was in quotes. This */

/* list is then tokenized into a list of words. Tokenize does this */
/* through the aid of the getrestword predicate. Tokenize gets *I
/* all the words from within the quoted atom A which are separated */
/* by a space, appends them to the list called List, and forms the *I
1* new list called NevList. The tokenize predicate is an alteration */

* /* of a predicate by the same name taken from Claudia Marcus's book */
/* "Prolog Programming", pages 203-210. *I
I* *

/* Constraints: tokenize(+,+,-). */
/* The first argument must be a list of ASCII numbers. The second */
I* argument must be a list. *I

tokenize([HITI, List, L) :- /* Make certain that the first */
identifier(H), I* thing in the quoted list is */
1, /* an identifier, then get the */
get rest word(T,[HJ,Word,Rem), /* rest of the word. Once all */
append(List,jWord),NewList), /* the word is obtained, append *1

* tokenize(Rem,NewList,L). I* it to "List" to get "NevList".*/
/* Then tokenize the rest of the */

tokenize([321T], List, L) :- /* List. Remove all nonessential*/
/* blanks. */

tokenize(T, List, L).

* tokenize(l], List, List).

tokenize([39IT],List,L) :- /* Ouoted atoms within the quotes*/
1, /* for the OAV triple must be */
getrestquote(T,[39],Word,Rem), /* treated differently. A pred- t/
append(List,[WordI,NewList), /* cate called "getrest_quote" */

* tokenize(Rem,NevList,L). /* is used to get the rest of the*/
/* quote. */

/* -------------------------- get_restquote ----------------------- *
/* */

/* The get_rest_quote predicate gets as its first argument a list of */
* /* ASCII numbers representing the remaining portion of an OAV triple */

/* which it is trying to tokenize. The leading quote has already */
/* been seen and now get restquote will get the remaining portion of*/
/* the quote, convert it from an ASCII list to an atom, and return */
/* it as its third argument. */
/* */

* /* Constraints: get_restquote(+,+,-,-). */
/* The first argument must be a list of ASCII numbers. The second */
/* argument must be a list. */

B-12

0r

get_rest_quote([391T], List, Word, T) :- /* If a quote mark is ob- */
1, /* served, append it to */

* append(List,[39J,NewList), /* the end of the list rep-*/
name(Word,NewList). /* resenting the rest of */

/* quote and convert it to *f
/* an atom and return it. *1

get_restquote([HiT, List, Word, Rem) :- /* Otherwise, append the */
1, /* next character of the */

* append(List, IHi, NewList), /* quote to the end of the *1
get_rest_quote(T, NewList, Word, Rem). /* list and continue. */

/* ------------------------ get_rest_word -------------------------- *
/* ,/

/* The getrest word is fundamentally the same as the "getrest *
* /* quote" predicate. The get_rest word predicate will be given an */

/* ASCII list L1, and a second list, L2, which may have ASCII num- */
/* bers also, and will append all the ASCII numbers up to the first */
/* '32', representing a space, of Li to L2, convert it over to text */
/* and output it as Word and output the remainder of the ASCII */
1* numbers as REM. *I

/* Constraints: get_rest word(+,+,-,-). */
/* Same as get_rest_quote. */

get rest word([HIT], List, Word, X) :- /* Get the next ASCII num- */
identifier(H), /* ber and make sure it rep-*/

* 1, I* resents an identifier. *I
append(List, [Hi, NewList), /* Append the ASCII number */
getrestword(T, NewList, Word, X). /* to a temporary list and */

/* continue this operation */
/* until a space mark is */

get rest word([321T], List, Word, T) :- /* encountered. When a "32"*/
* name(Word, List), /* (a space) is seen, re- *1

r. /* turn the converted list */
I* along with what remains *I
/* to be parsed. */

get restword([], List, Word, [I) :- /* When there is no more */
T, /* ASCII list to be token- */

* name(Word, List). /* ized, the list is con- */
/* verted to a word and */

/* returned. */

/* -------------------------- identifier ----------------------------- *
/* ,/

* /* The identifier predicate identifies valid characters which may be */
/* inside ABC's OAV triples. */
/* ,/

/* Constraints: identifier(+). */
/* The argument must be an atom.

B-13

0

identifier(D) :- /* An identifier can be any letter or digit. *I
letter(D);

* digit(D),
i .

identifier(95). /* An identifier can also be an underscore. *
identifier(36). /* An identifier can also be a p sign. */
identifier(46). /* An identifier can also be a period. */

• identifier(63). /* An identifier can also be a question mark. *

/* --------------------------- letter -------------------------------- *
/* */

/* The letter predicate tests to see if an ASCII number symbolizes */
/* some letter of the alphabet. If it does, the "letter" predicate */

• /* succeeds. If not, the predicate fails. */
/* ,/

/* Constraints: letter(+). */
/* The argument must be an ASCII number between 1 and 255. */

letter(A) :- /* A letter is any capital letter between */
* A =< 90, /* "A" (ASCII #65) and "Z" (ASCII #90).

A >= 65,
1.

letter(B) :- /* Or a letter is any small letter between */
B =< 122, /* "a" (ASCII #97) and "z" (ASCII #122). */
B >= 97,
1.

/* --------------------------- digit --------------------------------- *
/* */

/* The digit predicate tests to see if an ASCII number symbolizes */
/* one of the digits between and including zero through nine. The */
/* predicate succeeds if it does symbolize a digit and fails if it *I
/* does not symbolize a digit. */
I* *I

/* Constraints: digit(+). Same as the predicate "letter". */

digit(C) :- /* A digit is any ASCII character between */
C =< 57, /* 48 and 57 (Zero through Nine). */
C >= 48.

B-14

/* --------------------------- consultation ------------------------ */
I* *I

/* The ABC command CONSULTATION is similar to BC3's START predicate. */
/* It initializes the KB why retracting all the vhy traces, reversing */
/* the goal list and inserting the reversed goal list in the trace */
/* mechanism. This is also the top level predicate which tries to */
I* solve the goals. */

execute(consultation) :-
cls, /* This predicate starts by clear- */
retract all(why trace(_)), /* the screen and the why-trace */
ask initial askables, /* mechanism. It then asks the user*/
goals : Goals, /* all askables declared initial. */
solve(Goals), /* It then solves the goals and */
reversegoals(Goals,RevGoals), /* asserts the goals into the trace*/
assert_goals(RevGoals), /* mechanism in reversed order. */
nl,nlnl,
write('Do you wish to save working memory to disk? (<y>,n) '),
get reply(Reply),
(Reply = yes, /* This predicate also prompts the */
save wm /* user to inquire about saving */

/* working memory. If answered */
true /* with a positive response, the */

), nl,nl, /* predicate "save wn" is executed */
1, /* otherwise, the predicate con- */
fail. /* tinues through the cut and */

/* ultimately failing causing a *I
/* return to the ABC prompt. */

execute(consultation) :- /* If the goals cannot be solved, */
nl,nl,tab(16),
write('ABC Consultation Complete - No Solutions Found'),
1,
fail. /* then the "no solutions" message */

/* is posted prior to returning to */
/* the ABC prompt. */

/* -------------------------------- go ------------------------------

/* Allows the user to type "go" as an ABC command as opposed to the */
/* ABC command "consultation." */

execute(go) :- /* "go" simply executes the ABC com- */
1, /* mand called "consultation". */
execute(consultation).

B-15

0

/* ------------------------ ask initial askables --------------------- *
/* */

/* The ask initial askables predicate searches the Prolog database */
/* for "initial askables" and if found, asks the user a question and */
/* prompts him for a reply. This will continue until all "initial_ *
/* askables" are asked. */
/* *

/* Constraints: All initial askables in the Prolog database must be *I
/* structured in accordance to the ABC user's manual. */

ask initial askables :-
initial askable : [Obj,Attr,Val] derived-from Ouestion and

ValidAnsvers,
askquestion([Ob,Attr,Val],Question,ValidAnsvers,Value,CF),
assert in trace(askable : [Obj,Attr,Value,CFJ),
fail.

ask initial askables.

B-16

/* ask-question -............- *
/* */

/* The ask_question predicate checks to see if the question can be */
• /* asked. If the OAV triple associated with the question is already */

/* in the trace, then the question will not be allowed. The ask */
/* question predicate sets up how the question is asked, gets the */
/* user's reply to the question, and asserts the appropriate OAV */

/* triple in the trace mechanism. It also allows the user to in- */
/* quire as to "why" a question is being asked. */

askquestion([Obj,Attr,Val],Question,Valid Answers,Value,CF) :-
not in trace(Obj,Attr), /* Checks To see if the object-attr */
nl,nl,nl, /* pair is in the trace. */
name(Query,Question),
write(Query),nl,

* write valid answers(Val,Valid Answers,l,Nbr of Answers),
getanswer(Nbr ofAnswers,Ansver),!,
(Answer = why,
cleanup_why_trace(Obj,Attr,Val), /* Delete remnants of failed */
explainvhy([Obj,Attr,Valj), /* rules from the why trace. */
ask_question([Obj,Attr,Val],Question,ValidAnswers,Value,CF),

/* Ask the question. */
Valid Answers = [yes I 1,
nonvar(Val), /* If the valid answers are yes and */

Value = Val, /* no, then if the user chose answer */
(Answer = 1, 1, /* number one (yes), then the triple */
CF - 100, 1 /* is asserted in the trace with a CF */

/* of 100. Any other response from */
CF = 0, ! /* the user cause the triple to be */

) /* asserted with a CF of zero. */

Answer = 1, /* If the valid answers are a numer- */
Valid Answers = [Valuel _, /* list and the user replied with a */
CF = 100, 1 /* one, then assert the head of the */

/* valid-answers list into the trace. */
Structure =.. Valid Answers, /* Otherwise, turn the valid answer */
Arg is Answer - 1, /* list into a structure and use the */
arg(Arg,Structure,Value), /* "arg" predicate to acquire the */
CF = 100 /* correct corresponding answer. */

), I.

B-17

* ------------------------ write valid answers ---------------------- *
I* ,I

/* The write valid answers predicate is responsible for numerating */
/* and displaying all the valid answers in a "pretty" format. It */
/* also acquires the number of valid answers and passes this infor- */
I* mation on so a check can be made to make sure the user doesn't *I
I* try to select a number that does not correspond to a valid choice.*/I* *1

/* Constraints: write valid answers(+,+,+,-).
/* The first argument must be an atom. The second argument must be */
/* a list. The third argument must be an integer. */

writevalidanswers(_,[], ,0) :- I.
write valid answers(Value,[Valid AnsverlRest],Ansver Nbr,MaxNbr) :-

tab(4),write(AnswerNbr),write(': '),write(Valid_Answer),
(Rest = [], !,
MaxNbr = AnswerNbr, nl /* If no more values exist in valid *I

;* answer list, the number of answers *I
Next Number is AnswerNbr + 1, /* is equal to the last answer's */
nl, /* number. Otherwise, recur- */
vritevalidanswers(Value, /* sively loop to get next number */
Rest,NextNumber,MaxNbr) /* while incrementing Answer number. */

), 1.

/* ----------------------------- get answer ------------------------
/* ,/

/* The get answer predicate is given as its first argument, the max- *I
I* imum number which can be returned as a valid response to an */
/* askable. If the user tries to respond with a invalid answer, the */
/* get_answer predicate will flag the "invalid input" and prompt the */
/* user for a valid answer. This predicate returns either the num- */
/* which corresponds to answer selected by the user or the atom "why"*/
/* which corresponds to the user wanting an explanation to the *1
/* question. */
/* ,/

/* Constraints: getanswer(+,-).
/* The first argument must be an integer between 1 and 9. */

get answer(Max Nbr,Answer) :-
nl,vrite('Enter Number or w (for why) > '),

get(Reply), !,
(Reply = 119, /* After the user is prompted to pro- */
Answer = why, I /* an answer, the user responds by */

/* typing in the letter "v" (ASCII */
(Reply < 49 /* number 119) or a number between one*/

Reply > 48 + Max Nbr /* and the max number. */
), nl, vrite('Invalid Input.'), /* The ASCII number for one is */
write(' Please try again.),nl, /* 49.
getanswer(MaxNbr,Answer),

Answer is Reply - 48

B-18

0

/* solve- */
/* ,/

• /* The predicate solve is used to solve "Goals" in the form of */
/* "goals : goal_1 and goal 2 and ... goaln." where each goal is a */
/* triple. The solve predicate also initiates the "why" trace and */
/* displays all solved triples which are not explicitly told by the */
/* user. */
/* ,/

* /* Constraints: solve(+). */
/* Goals must take the form outlined in the ABC user's manual. */

solve([]).
solve(Goals) :-

(Goals = [Obj,Attr,Val] and Others /* Multiple goals are split. */
* ; /* Single goals require that */

Goals = [Obj,Attr,ValJ, /* "Others" be instantiated to*/
Others = [] /* an empty list. The first */

/* goal is solved first then */
retract all(vhytrace()), /* the "Others" are solved. */
asserta(vhytrace(goal:[Obj,Attr,ValI)),!, /* Initiate why-trace. */

* known([Obj,Attr,Valj,CF), /* Solution requires that the */
1, /* OAV triple is "known" and */
(CF = 100, /* Instantiated. If a value */

List = [Val cf 1001 /* of a O-A tuple is "known" */
/* with a CF of 100; quit and */

get_list(Obj,Attr,Val,List) /* return that one value, */
*), /* otherwise, get a list of */

writegoal(Obj,Attr,Val,List),!, /* all the values and write */
nl,nl,tab(27), /* out the list. */
write('Hit any key to continue.'),
getO(_), /* Solve the rest of the */
solve(Others). /* goals. */

/* ------------------------- known ----------------------------------- */* ,/

/* The known predicate is activated when a top-level rule or frame */
/* matches a goal. It attempts to satisfy this top-level rule or */
/* frame by matching it against other facts, assertions, rules, */
/* frames or askables in the knowledge base. If the top level rule */
/* or frame is "known", then the goal is said to have a solution. */
/* The "known" predicate uses the "is known" predicate to solve the */
/* lower levels of the search for a solution. If a triple is "known"*/
/* the "known" predicate will succeed and will return a calculated */
/* certainty factor giving the relative strength of how well the OAV */
/* triple is "known". */
/* *1

/* Constraints: known(+,-). */
/* The first argument must be a OAV triple. */

B-19

0

knovn([Obj,Attr,Val], CF) :- /* The goal matches the conclusion of */
Rule : if Conds then [Obj,Attr,VallRule_CFJ, /* a rule. */
retract all(rule trace(Rule, ,)),

* clean-up_vhytrace(Obj,Attr,Val),
asserta(why trace(Rule : [Obj,Attr,ValIRuleCF] derivedfrom Conds)),
is knovn(Conds, Rule, 1, CondCF),
((Rule CF = [I /* The overall CF is the product of */

Rule-CF = [cf,100 /* rule CF and the lowest CF of the */
/* conditions divided by 100, so if */

0 CF = CondCF /* rule CF is 100, then this is re- */
/* duced to the overall CF equalling */

Rule CF = [cf,CFlj, /* the CF of the conditions. */
CF is CondCF * CF1 / 100 /* Otherwise, perform the calculations*/

/* and assert the rule and its cond- */
assert in trace(Rule), /* itions in the trace mechanism. */
assert in-trace(Rule : [Obj,Attr,Val,CF] derived from Conds),
CF = 1O0,T. /* If the overall CF is less than 100,*/

/* backtrack and get other solutions */
/* if they exist. */

known([Obj,Attr,Vall, CF) /* The goal matches a value being */
* frame : Obj slot Slots, /* stored in a frame. */

frameget(Obj,Attr,Value List),
member(Val,Value List),
assert in trace(frame fact : [Obj,Attr,Val,100),
CF = 100, !.

* known([Obj,Attr,Val, CF) :- /* There were no solutions to */
(trace(_ : jObj,Attr,Val I CF11) /* goal which had a CF of 100 so*/

/* the overall solution to the */
trace(Rule : [Obj,Attr,Val I CF11 derived from _) /* goal is the */

/* individual group of solutions */
((CF1 = 11 ; CF1 = 11001), /* which were asserted into the */

• CF= 100 /* trace. */

CFl = [CF]

/* ------------------------ assert in trace -------------------------- ** /* */

/* The assert intrace predicate asserts one of the ABC structures *1
/* into the trace. If it already exists in the trace, then it will */
/* not be asserted a second time. If a fact, confirmed assertable, */
/* or a rule already exists with the same OAV triple as a solution, */
/* then the original OAV triple's CF will be adjusted to reflect the */

* /* additional support but the new structure will not be placed in */
/* the trace. If neither of the above is true, only then will the */
/* structure be placed into the trace mechanism. */
/,**

/* Constraints: assert in trace(+).
/* The argument must be a valid ABC structure (i.e. fact: (0,A,Vj), */

* /* or the rule number of a top level rule which solved the goal. */

B-20

0

assert in trace(Head : Triple) :- /* Do not assert a clause in the *
trace(Head :Triple), /* trace mechanism if it already *

1. * exists. *

assert -in trace(Rule : (Obj,Attr,ValICF11 derived-from Conds) :

(trace(Head :IObj,Attr,ValICF2I),
calculateCF(CF1,CF2,CF),
replace_trace(Head : (Obj,Attr,Val,CFJ)

* trace(Head : Obj,Attr,ValICF2I derived-from Cond_2),
calculateCF(CFl,CF2,CF),
replace_trace(Head : [Obj,Attr,Val,CFI derived-from Cond_2)

asserta(trace(Rule : [Obj,Attr,ValICF1J derived-from Conds))

assert in trace(Head : [Obj,Attr,ValICFlJ) :

(traceTOldHead : Obj,Attr,ValICF2]),
calculateCF(CF1,CF2,CF),
replace_trace(OldHead :IObj,Attr,Val,CFJ)

* trace(Rule : (Obj,Attr,ValICF2I derived-from Conds),
calculateCF(CF1,CF2,CF),
replace trace(Rule :[Obj,Attr,Val,CF] derived-from Conds)

asserta(trace(Head : Obj,Attr,ValjCF1J))

assert in trace(Rule No) :-/* If a rule is being placed in *
retract~rule-trace(RuleNo, _, Clause)), f* the trace mechanism, *
assert in trace(Clause), /* then also place the proven *
fail. /* conditions of the rule in the *

* assert-in-trace(_) :- !. /* trace also. *

/* --------------------------- calculateCF ---------------------------- 1

/* The calculate_CF predicate takes as Its two inputs, two certainty *
/* factors, which it uses to calculate the combining certainty *

* 1* factor from. It uses the formula CF = CFl + (100-CF1)/100 * CF2. *

/* Constraints: calculateCF(+,+,-). *
/* The two inputs must be either lists, empty or with one number *
/* equal to or less than 100, or they may be Just one number equal *
1* to or less than 100. The two types cannot be mixed. *

calculateCFUI, _100). 1* When one of the certainty factors *
calculate CF(I100J,_,lO0). /* is known with a CF of 100, then it *
calculateCF(100, 10l0). /* doesn't matter what the other one *
calculateCF(_ [(,100). /* is, the overall CF will always be *
calculateCF(_ 1100I,100). /* 100. *

* calculateCF(_,100,100).

B- 21

0

calculate CF([CF1],[CF2],CF) :- /* Calculate the overall */
CF is C'I + (100 - CF1) / 100 * CF2, 1. /* CF by using the for- */

calculate CF(CF1,CF2,CF) :- /* mula described above. */
* CF is CF1 + (100 - CF1) / 100 * CF2, I.

/* ------------------------- replacetrace ------------------------- *
/* ,/

/* The replace_trace predicate replaces a clause in the trace mech- */
/* anism with an updated clause. Actually all that gets updated is */

* /* the certainty factor. Whenever a second rule or fact derives a */
/* a solution which has already been found and placed in the trace, */
/* the second rule or fact will not be asserted, yet its certainty */
/* factor will be used to increase the CF of the original assertion. *//* */

/* Constraints: replacetrace(+). */
* /* The argument must be a valid ABC knowledge structure. */

replacetrace(Rule : [Obj,Attr,Val,CF] derivedfrom Conds) :-

assertz(trace(marker)),
circulatetrace(Rule : [Obj,Attr,Val,CF] derived-from Conds),
I.

replace trace(Head : [Obj,Attr,Val,CFJ)
assertz(trace(marker)),
circulatetrace(Head : [Obj,Attr,Val,CF]),
I.

/* ----------------------- circulate-trace ------------------------- *//* *1

/* The circulate trace predicate actually does all the work which */
/* the "replace trace" predicate is responsible for. It circulates */
/* the trace clauses in the Prolog database, "popping off" clauses */

• /* from the top of the stack and placing them back on the bottom, */
/* until the entire stack of trace structures have been moved back */
/* to their original position. Additionally, it replaces the CF of */
/* the old trace structure with the new CF in the shuffle. */
/* ,/

/* Constraints: circulate trace(+). */
* /* The argument must be a valid ABC knowledge structure. */

B-22

0

circulate trace(Rule : [Obj,Attr,Val,CFJ derived-from Conds) :
retract~trace(Knovledge)), /* If knowledge structure is a *

* (Knowledge \- marker, /* rule matching the argument, *
(Knowledge - Rule : [Obj,Attr,ValJ _J derived -from Conds,
assertz(trace(Rule : IObj,Attr,Val,CFJ derived-from Conds))

/* then change its CF and assert *
assertz(trace(Knowledge)) /* it back, otherwise just *

)111 /* assert the rule back.
* circulate trace(Rule :IObj,Attr,Val,CF] derived-from Conds),

/* If the marker has not been *
true /* seen, continue circulating the*/
)1. /* trace, otherwise quit. *

* circulate trace(Head : IObj,Attr,Val,CFJ) :-
retract~trace(Knowledge)), /* If the knowledge structure is *
(Knowledge \=marker, /* something other than a rule, *
(Knowledge =Head : IObj,Attr,ValI _], /* then this rule applies.*/
assertz(trace(Head : [Obj,Attr,Val,CFI))

* assertz(trace(Knowledge))

circulate-trace(Head :[Obj,Attr,Val,CFJ),

true

------------------------------------ get_list----------------------------*

/* The get_list predicate assumes that Obj-Attr-Val triple is in the *
/* trace somewhere with a certainty factor less than 100. The get_-*

/ list predicate will return a list of all values along their
/* certainties for every different value found in the trace which *
/* matches the Obj and Attr. *

/* Constraints: get_list(i,+,+,-). *
/* The three arguments provided must all be atoms. *

B-23

get_list(Obj,Attr,Val,List)
nonvar(Val), /* Find all knowledge structures in *

* retract all(temp_list(_)), 1* trace which matches the Obj-Attr *
asserta~temp_list([1)), /* pair and place them in a list. *

((trace(Type : [Obj,Attr,NevVal,CF1J),
Type \=confirmed-not,
CFl \ 0

trace(_ : Obj,Attr,NewVal,CF1I derived-from_)
CFl \= 0

temp -list(Partial List), /* If a triple is already*/
not rember(NewVal cf , Partial List), /* part of the list, do *

* TempList = INevVal cJ CFl I Partial Listj, /* not add, other- *

retract all(temp list(_)), /* wise, assert Into the *
asserta~temp_lisT(TempList)), /* list, fall, and go *

fail /* backtracking to get *
/* the rest. *

retract(temp list(List)),
retract-all(temp-list(_)) / When you get all the *

), !. * triples, return the *
/* List.

/* ---------------------------- wri tegoal ----------------------------- 1

* 1* When a goal Is solved, this fact is displayed on the screen with *
/* all the solutions (if no solution has a certainty factor of 100%) *
/* except those goals which where directly obtained and confirmed by *
1* asking the user. *

/* Constraints: write_goal(+,.,+,+). *

write goal(Obj,Attr,Val,List)
cls,
nl ,n , ni,
tab(17),
write('The Solution(s) To The Goal Are Listed Belov'),nl,tab(17),

write-all-goals(Obj,Attr,Val,List), t.

write all_goals(_ ,_ ,_,()
write all goals(Obj,Attr, _ [IVal cf CFIRest)):

(confirmed([Obj,Attr,ValJ),!

nl,tab(15),
writelist([Obj,Attr,Val,with,cf,of,CF,'.'I),
nl

write-all-goals(Obj,Attr, _,Rest).

B-24

/* ----------------------------- reversegoals --------------------- *

/* The reverse_goals predicate simply reverses the goals list so */
• /* that the goals may be asserted into the trace mechanism in their *I

/* proper order. Because of operator precedence problems, the */
/* reversed goals (Reversed Goals) must be made up of the last goal */
/* found in the original goal list with the ABC operator "and" and */
/* the reverse of the remainder of the original goals. *1
/* */

/* Constraints: reversegoals(+,-).

reverse_goals(Goal and Rest, Last Goal and Rev Rest)
getlastgoal(Goal and Rest,Last Goal,Remainder),
reverse goals(Remainder, RevRest), 1.

reverse_goals(Goal, Goal).

/* -------------------------- getlastgoal ----------------------- *
/* */

/* The get_last goal predicate simply breaks the goals list into the */
/* the last goal and all the remaining goals. */
/* *

* /* Constraints: get_last_goal(+,-,-). */

getlastgoal(Goall and Goal2 and Rest, LastGoal, Goall and Rem)
get last goal(Goal2 and Rest,LastGoal,Rem), 1.

getlastgoal(Goall and Goal2, Goal2, Goall).
getlastgoal(Goal,Goal,_).

/* ----------------------------- assert_goals ---------------------- *
/* *

/* The "assert_goals" predicate assert goals into trace mechanism */
/* only if all the goals can be solved. *//* */

* /* Constraints: assert_goals(+). */

assert_goals(Goal and Other Goals)
asserttrace(goal : Goal), /* Assert the head goal and then */
assertgoals(OtherGoals). /* recursively get the rest of */

assertgoals([Obj,Attr,Val]) :- /* goals and assert them also. */
* assert trace(goal : [Obj,Attr,Val]).

assert_goals(_).

/* ----------------------------- save wm ----------------------------- */* ,/

/* The save working memory predicate saves the working memory por- */
* /* tion of the knowledge base to a separate file. The filename is */

/* provided by the user. The file can easily be read and altered by */
/* an ASCII editor. The save wm predicate will save all the frames */
/* along with all the confirmed and denied triples in the working */
/* memory of the Prolog database. */
/* */

• /* Constraints: None

B-25

0

save win
cls,
nl,nl, nl,

* write('You have elected to save working memory to disk.'), nl,
vrite('Please supply a filename or press <RETURN> to abort.'), nl,nl,
vrite('ABC save wm > '),
readline([],Filename), /* The user either provides a file- */
(Filename i '', /* name or aborts the procedure.
nl, write('Procedure to save working memory is aborted.'),nl,nl

tell(Filename), /* If a filename was given, the file */
write('/* '), nl, /* is opened an a header is printed. */
write('This is the working memory file for the file called

vrite(Filename), nl, /* Another header for the frames is */
* write(' */'),nl,nl,nl, /* written to the file. */

write('/* Below is a listing of all the frames. */'),
nl,nl,
write frames, /* The frames are written to the file.*/
nl,nl,
write('/* Below is a listing of all confirmed triples. */'),

* nl,nl, /* A header for the confirmed triples */
write confirmed_triples, /* is written followed by the triples */
nl,nl, /* themselves.
write('/* Below is a listing of all denied triples. */'),
nl,nl,
write deniedtriples, /* Last, the denied triples are sent */

* told /* to the file and the file is closed.*/

/* ----------------------------- write frames ------------------------- *
I, *I

/* The write frames predicate retrieves all of the frames in working */
* /* memory portion of the Prolog database and writes them to the

/* current output device. */I. *I

/* Constraints : None */

write frames :-
* frame : Frame slot Slots,

write('frame : '),
write(Frame),nl,
writeslots(Slots),
nl,
fail.

* writeframes.

B-26

0

/* ---------------------------- write-slots ---------------------------
/* */

/* The write slots predicate takes all the slots of a given frame */
/* "pretty prints" them to the current output device. */
/* *

/* Constraints: write slots(+). */
/* Argument must be in the form "[Slot,SAttr,SVal, ...I slot [...J" ,/

write slots(Slot slot Slots) :- /* If there is more than one slot */
, /* then print out the word "slot" */

write(' slot '''), /* followed by a single quote. */
writelist(Slot),put(39),nl,!, /* Print out the slot list followed*/
writeslots(Slots). /* by another single quote. */

write slots(Slot) :- /* The last slot goes through the */
1, /* same procedure as above however,*/
write(' slot "'), /* a period is placed after it */
vritelist(Slot),put(39), /* to indicate that its the end of */
write('.'), nl, !. /* term when read by the Prolog */

/* reader. */

/* ----------------------- write confirmed triples -------------------- *
/* *1

/* The write confirmed triples predicate is used by the "save wm" */
/* predicate to save all the confirmed triples to working memory. */

/* */

/* Constraints: None */

write confirmed triples :- /* Retrieve confirmed triples */
confirmed(Triple), /* from the Prolog database and *I
writeq(confirmed(Triple)), write('.'), nl, /* them to the current */
fail. /* output device. Backtrack and */

writeconfirmed_triples. /* the other confirmed triples. */

/* ----------------------- write deniedtriples -----------------------*
/* */

/* The writedenied triples predicate is used by the "save_wm" pred- */
/* icate to save all the denied triples to working memory. */
/* ,/

/* Constraints: None */

write denied triples :- /* Retrieve denied triples from */
denied(Triple), /* the Prolog database and write */
writeq(denied(Triple)), write('.'), nl, /* them to the current */
fail. /* output device. Backtrack and */

write denied triples. /* get the other denied triples. */

B-27

1*------------------------------ restore --------------------------

/* The ABC command RESTORE, removes all the asserted knowledge which 41
/* was "learned" during a consultation. It also destroys the trace 41
1* of past consultations. It does this through the use of two similar*/
1* predicates, RESTORE KB (which does the retractions) and RESTORE KB */
/* WC (restore the KB with comments) which prompts the user to see if-4/
1* he would like to abort the operation. *1

/* Constraints: None */

execute(restore)
restore kbvc,
1,

fail.

restore kb wc :- /4 Vrite out a warning to the user. 4/
nl,nl,
write('CAUTION: You are attempting to restore your knowledge base'),
nl,
write('This will delete all knowledge learned during past

consultations'),
nl,
write('from working memory.'),
nl,nl,
write('Do you wish to continue with the restore operation? '),
get_reply(Reply),
(Reply = yes, /* If the user chooses to continue, 4/

restore kb I* then restore the knowledge base. */

true

/* ----------------------------- restore kb ------------------------ *

/* The restorekb predicate retracts all the temporary knowledge of 41
/* previous consultations which were inserted into the Prolog data- */
/* base. */

I* Constraints: None 4/

restore kb :-
retractall(why_trace(_)),
retractall(trace(_)),
retractall(ruletrace(_ , _, _)),
retract all(confirmed(_)),
retractall(denied(_)).

B-28

/* ------------------------------- trace --------------------------- 1
/* */

/* The trace mechanism is very different in ABC than in the BC3 shell.*/
/* Rather than keeping the trace in the form of a list which was */
/* passed as a parameter, ABC uses Prologs built-in Top-Down structure*/
/* and asserta/assertz asserting mechanisms to place the pieces of the*/
/* trace into memory. It then uses Prolog's built-in search mechanism*/
/* to extract the information. This is an improvement, especially in */
/* larger KBs where the lists may get large and unmanageable very */

* /* quickly. If no trace exists, "trace(X)" will fall and the message *I
/* that no trace exists will appear. */

execute(trace)
trace(X), /* Obtain the next item in the trace */
cls, /* by matching the variable "X" to it.*/
nl,nl,nl, /* If one does not exist, then fail */
tab(26), /* go to the trace rule below. */
write('ABC Trace Since Last Restore'), /* Write a header on the */
nl,tab(26), /* screen. */
wri te(')

nl,nl,• 1,
printtrace, /* Print the trace out to the current */
, * output device. */

fail. /* Fail and go back to ABC prompt. */
execute(trace)

nl,nl,
tab(22),
write('There is NO trace in working memory.'),
nI,
1,
fail.

S/* ----------------------------- printtrace ------------------------- */* ,/

/* The print_trace predicate actually lists the trace on the screen. *1
/* It extracts the top trace of Prolog database stack and matches */
/* it to either a goal, an askable, a fact, etc and writes the trace *1
/* on the screen preceded by one or more words to show the user how */

* /* the triple was placed into the trace. The last line, "getO(13)", */
/* allows one step of the trace to be shown at a time so the trace */
/* will not scroll off the screen. Whenever the user presses the */
/* space bar, the next triple in the trace will be shown. This loop */
/* continues until no more triples are left or until the user *1
/* presses the ENTER key. */* I* *

/* Constraints: None *1

B-29

print trace :

trace(X),
(nl,
X = (goal : Triple),
write('Goal: '), /* Print out a goal. *
writelist(Triple),
nl

X = (askable : Triple),
* write('Askable: 1), /* Print out an askable. *

vritelist(Triple),
nl

X = (fact : Triple),
write('Fact: '), /* Print out a Fact.
writelist(Triple),
nl

X = (solved : Triple),
write('Solved: '), 1* Print out triples which were *
writelist(Triple), /* mathematically solved. *

* nl

X = (was told :Triple),
write('Told: '), /* Print out triples which were told *
writelist(Triple), /~to ABC explicitly by the user. *
nl

X = (confirmed not : Triple),
write('Contradicted: ', /* Print out triples which were *
writelist(Triple), /* contradicted. *
nl

*X = (was proved :[Triple,RuleJ),
write('Proved:)
writelist(Triple), 1* Print out triples which were *
write(' using '), /* proved solving a rule. *
wri te(Rule),
nl

X = (Rule : Triple derived-from Conditions),
write(Rule),
write(': '),
writelist(Triple),
write(, was derived from'),

* nl,
write conditions(Conditions),
nl

B-30

X = (frame fact : [Obj,Attr,VallRest]),
vrite('From the frame '),
vrite(Obj), /* Print out triples found from */
write(', '), /* frames.
vritelist([Obj,Attr,Valj),
write(' was obtained.'),
nl

X = (via ako : [Frame,Parent Frame]),
* write('Via an ako link from 7),

write(Frame), /* Print out "ako" links between */
write(' to '), /* frames when these links are used. */
write(ParentFrame),
write(','),
nl

getO(13).

/* ----------------------------- remove kb ------------------------- *
/* ,/

/* This ABC command, REMOVE KB, removes a KB from working memory. */
/* Because this is such a drastic step, the user is prompted to see if*/
/* he wishes to continue. If continued, all rules, facts, frames, and*/
/* askables will be removed from working memory. */
/* ,/

/* Constraints: None. *1

execute(removekb) :-
nl,nl,
write('CAUTION: You are attempting to remove your knowledge base'),
nl,
write('from working memory.'),
nl,nl,
write('Do you wish to continue with the removal operation? '),
getreply(Reply),
(Reply = yes,

remove kb

nl,nl,
write('Aborting remove knowledge base operation.'),

nl
),

fail.

B-31

remove-kb
restore-kb,
retract all(goals J,

*retract all(fact :),
retract all(askable : derived from _and _J,
retract all(initial askable : _ derived-from _ and _J,
retract all(Rule :if _then_)

retract-all(frame: -slot _J.

/* *-----------------------------review-goals -------------------------- *

/* This ABC command, REVIEWGOAL, allows the user to display the cur- *
/* rent goal list. *

execute(reviev-goals) :

* cls,
nl,nl,nl,
tab(23),
write('Goals Currently in Working Memory'),
nl, tab(23),

* nl,nl,
(goals :Goals,
print_goals(Goals)

tab(29),
write('No Goals Can Be Found'))

fail.

/*-------------------------------- import----------------------------*

/* The import command is similar to the load commands in that it *
* 1* loads in (via Prolog's consult predicate) a file from disk. It *

/* differs in that it loads in auxiliary files and/or demon files. *

execute(import) :

nl ,nl,
vrite('This ABC command imports Prolog code Into working iemory.'),nl,

* write('Do you wish to continue? (<y>,n): '),
get_reply(Rply) ,nl,nl,!,
(Rply = yes,
write('What is the full name of your file?'),nl,
wrlte('ABC import > '),
readline([]I,Filenaine),

* consult(Filename),
nl,nl,vrite('Import is complete.'),nl

fail.

B-32

/*------------------------------- review rules------------------------*

* /* This command allows the viewing of rules in working memory. *

execute(reviev-rules) :

CIS,
nl,nl,nl,
tab(26),vrite('ABC Rules in Working Memory'),nl,

*tab(26),write('-----------=========='),nl,nl,

(Rule : if Conds then Conclusion,
write(Rule),write(' if'),nl,
write conditions(Conds),nl,
write(' then ') ,write(Conclusion) ,nl,nl,

40 getO(_),fail

write('No more rules can be found.'),nl

fail.

/* *------------------------------ review frame-------------------------*

/* This command allows the reviewing of frames in working memory. *

/* It prompts the user for the frame to be reviewed. *

execute(reviev-frame) :
* nl,nl,

vrite('What is the name of the frame you wish to review?'),
nl,
vrite('ABC frame review > '),
readline(I, FrameName),
ClS,

* nl,nl,nl,
tab(17),
write('ABC Frame Review - For the Frame:')
vrite(FrameName),
nl,tab(15),

* nl,nl,
(frame : Frame Name slot Slots,
write-frame(Slots)

tab(20),
write('Sorry, No frame exists with that name.'),

* nl,nl

fail.

B- 33

write frame([J).
write frame((Slot,FacetlValuesi)

* nl,nl,tab(1O),
vrite('Slot - '),vrite(Slot),
write(' and Facet = '),vrite(Facet),nl,
tab(IO),write('Values -),vritelist(Values).

write frame(ISlot,FacetlValuesj slot Rest)
nl,nl, tab(1O),
vrite('Slot '),write(Slot),
write(' and Facet = '),write(Facet),nl,
tab(lO),vrite('Values = %),ritelist(Values),
getO(_),
write-frame(Rest).

/*------------------------------- add_goal--------------------------*

/* This command allows on-line adding of goals to the front of the *
/* goal list. *

execute(add_goal)
nl,nl,

0 write('Enter in the new goal in the form of an OAV triple.'),
nl,
vrite('(i.e. graduation-class is Class')
nl ,nl,
vriteQIABC add_goal > '),
readline([I,Triple), /* Goals are added without the normal *
name(Triple,Tpl_List), 1* constraints associated with the *
convert -triple(TplList,List), 1* Prolog read predicate. *
condition(List,NewGoal), /* Conditioning refers to writing the *
get_,goals(Goals), /* goal out to a file after it has *
(Goals = 11, /* been converted to its new format. *
assert(goals: NewGoal) /* This is necessary in Prolog to *

/* make the Prolog database accept *
retract(goals :Goals), /* variables. *
assert(goals New Goal and Goals)

fail.

B-34

* -------------------------- condition ------------------------------- *
/* */

/* The condition predicate takes triples which were read using ABC's *1
* /* readline predicate and converted from the quoted form to the list */

/* form and writes them out to a temporary file called "ABC.TMP". */
/* It then reads the file back into the Pcolog database using the */
1* Prolog read predicate. This is necessary because words written *1
I* beginning with an underscore or a capital letter is meant to be *1
I* a variable but ABC's readline predicate cannot do this. The only *1

* I* way a word can be seen as a variable is if it meets the Prolog *I
/* syntax requirements and is read into the Prolog database using */
I* the Prolog read predicate. *I

condition(List,NewList) :- /* The problem when converting a
tell('abc.tmp'), /* quoted triple to a list is that */

• write(List), /* capitalized variables are not *I
write('.'), /* recognized as variables because */
told, /* they are not read by the Prolog *1
see('abc.tmp'), /* reader. condition/2 writes the */
read(NewList), /* the list out to a temporary file */
seen. /* and reads it back so variables */

* /* are seen as variables. *I

getgoals(Goals) :- /* getgoals/i is used in lieu of *1
goals : Goals. /* "goals : Goals" because it will *1

getgoals((J). /* always succeed and it will return */
I* an empty list if no goals exist. *I

/* ---------------------------- add-frame --------------------------- *
/* */

execute(addframe) :-
* cls,

nl,nl,nl,
tab(33), vrite('ABC AddFrame'),nl,
tab(25), write('-----------),nl,nl,
tab(25), write('Frame Name (or quit.) : '),
readline([I,Framename),nl,nl, /* Read in the name of the */

* (Framename = quit /* frame along with its slot */
/* name, facet type, and slot */

tab(25),write('Slot Name : '), /* value.
readline([J,Slotname),nl,nl,
tab(25),write('Facet Type: '),
read facet(Facet),nl,nl,
tab(25),write('Slot Value: '), /* If you enter in a value for a */
readline([],SlotValue),!, /* slot with a "if-added" demon, *1
fput(Framename,Slotname,Facet,SlotValue) /* then "fput" will *1

/* cause the demon to execute. *1
I,

fail.

B-35

0

/*------------------------- read facet ---------------------------- */
1* *I

/* The read facet predicate safeguards the user from entering in a */
/* facet-type which is not recognizable by ABC.
I, *I

/* Constraints: readfacet(-). */

read facet(Facet) :-
readline([],Reply),
(member(Reply,jvalue,default,if needed,ifadded,if removed]),
Facet = Reply

nl,write('You must enter a legal FACET (e.g. value, default,
if needed,'),

nl,write('if added, if removed). Please try again.'),
nl,write('Facet type: '),
readfacet(Facet)

/*---------------------------- deletegoal ------------------------ *
I, *I

execute(deletegoal)
nl,nl,
write('Enter goal to be deleted.'),nl,
write('NOTE: The goal must be in the form of a quoted triple.'),nl,nl,
write('ABC Delete Goal > '),
readline([],Qgoal),
atom(Qgoal),
1,

name(Ogoal,Goal),
convert_triple(Goal,UncondGoal), /* Convert the goal from a */
condition(Uncond Goal,CondGoal), /* quoted triple to a triple in */
retract(goals : Goals),!, /* form of a list. The goal is */
remove_goal(Cond_Goal,Goals,NewGoals), /* deleted by extracting */
(New-Goals i [] /* the goal list, using the ABC */

/* predicate "removegoal" to */

assertz(goals : New-Goals) /* obtain a list of goals minus */
),nl,nl, /* the one deleted, and assert */
write('Deletion complete and successful.'),nl, /* this goal back */
1, /* into the Prolog database.

fail.

/*---------------------------- remove_goal -------------------------- *
I* *I

/* The removegoal predicate removes the goal provided as its first */
/* argument from the goal list provided as its second argument and */
/* returns the modified goal list as its third argument. If the
/* last goal is removed, what is returned is a empty list.
I, *I

/* Constraints: remove goal(+,+,-). */

B-36

removegoal(Goal,Goal,[]). /* Removing the only goal. *1
remove_goal(Goal,Goal and Addl Goals,Addl Goals). /* The first goal. */
remove_goal(Goal,Other Goal and AddlGoals,Nev_Goals) :-
removegoal(Goal,AddlGoals,ReturnedGoals),
(Returned Goals = [],
NewGoals = OtherGoal

New Goals = OtherGoal and ReturnedGoals

removegoal(_,Goals,Goals). /* Trying to remove a goal which does *1
/* not exist. */

/* ------------------------------ save wm ---------------------------- *
/* */

execute(savewm)
savewim, /* Call the "save wm" predicate and go back to */
1, /* the top level ABC prompt. */
fail.

/* ------------------------------- rules ----------------------------- *
/* */

execute(rules)
cls,
rules, /* Call the "rules" predicate and go back to *1
1, /* the top level ABC prompt. */
fail.

B-37

/* - - - -- - - - - -- - - - - syntax -- - - - -- - - - -- - - - -

/* This command will assist the developer/user to determine where *
0 1* syntax errors may exist in his knowledge base. It will write *

1* his knowledge base one term at a time on the display screen. *
/* When an error does appear, the user will notice the last terms *
/* read successfully and be able to determine the whereabouts of his *
/* error. *

S execute(syntax) :

nl ,nl,
write('What knowledge base file would you like to check?'),
nl,
write('NOTE: Remember the file must have the extension of .kb.'),
nl,nl,
write('ABC Syntax Checker >')
readline(I J,Filename),

name(Filename,ASCIIName),
check ext(ASCIIName,Ext),
(Ext = kb; Ext = abc),

0 cls,
nl ,nl ,nl,
tab(30), write('ABC Syntax Checker'),nl,
tab(1O),

nl ,nl,
* see(Filename),

repeat,
read (Term),
(Term = end-of-file,
seen,
nl ,nl,

* tab(20), write('Reading of file')
write(Filename),
write(' is complete.'),
nl, tab(20), write('No errors were encountered'),nl

Term = Rule : if Conds then Conclusion,
* tab(lO), write(Rule),

write(' is syntatically correct.'),nl,nl,
fail

tab(lO), write(Term),
wrlte(O is syntatically correct.'),nl,nl,

* fail

fail.

B- 38

/* commands-- */
/* ,

/* This ABC command simply displays all the available commands which */
/* may be entered at the ABC command prompt. This is done as a *1
/* memory jogger for the user. */

execute(commands) :-

commands,
1,

fail.

commands /* Displays all the available ABC commands on */
cls, /* the current output device. */
nl,nl,
tab(16),
write('ABC Command Line Commands Available to the User'),
nl,
tab(12),
write('-- '),

nl,nl,
repeat,
tab(12), write('help load import'),nl,
tab(12), write('consultation trace restore'),nl,
tab(12), write('quit commands syntax'),nl,
tab(12), write('rules save wm review frame'),
nl,
tab(12), write('reviewgoals add_goal deletegoal'),
nl,
tab(12), write('add frame add slot add value'),nl,
tab(12), vrite('delete frame delete-slot delete-value'),
nl,nl.

/*------------------------ any invalid command -----------------------*
/ */

/* If the command the user types In is not recognized, then the fol- */
/* lowing error message will be presented to the user. */

execute() :-
put(7), /* First thing that happens is an annoying beep */
nl,nl, /* then the user gets the following message. */
write('Bad ABC command. Consult User''s Manual or On-line help.'),
nl,

fail.

B-39

SJ

I* is known/4 *I

/* The is known predicate is the primary predicate which controls *I
/* the inference characteristics of ABC. The is known predicate is */
/* normally called upon by a rule to try to infer more implicit *I
/* knowledge from explicit facts and rules. It also returns the */
/* certainty factor which the triple or structure is known. *1

* I* *I

/* Constraints: is known(+,+,?,-) *I
/* The structure of the first argument must be in the form of a
/* ABC triple or an ABC rule condition. */

/* A conditional part of a rule is known if the conjunctive parts of */
* /* the conditions are both known. The CF will be the lesser of the */

/* two. */

isknown(Trpl_1 and Trpl_2, RuleNo, CondNo, CF)
nonvar(Rule No),
(var(Cond No), Cond No = 1 ; true),

• isknown(TrplI, Rule No, CondNo, CF1),
New CondNo is CondNo + 1,
isknown(Trpl_2, Rule No, NewCondNo, CF2),
(CF1 >= CF2, CF = CF2

CF = CF1

/* A conditional part of a rule Is known if either of the disjunc- *1
/* tive parts of the condition is known. If both are known, then *1
/* the two parts are treated as two separate rule conditions through */
/* backtracking, with each CF giving support to the same conclusion. *1

isknown(Trpl 1 or Trpl_2, RuleNo, CondNo, CF) :-
nonvar(Rule No),
(var(Cond No), Cond No 1 1; true),
(isknown(Trpl_1, RuleNo, CondNo, CFl),
CF = CF1

0
isknown(Trpl_2, RuleNo, CondNo, CF2),
CF = CF2

B-40

0

/* A conditional negated triple is known if the unnegated triple */
/* is not known. The CF will always be 100. */

* is known(not [Obj,Attr,ValJ, RuleNo, CondNo, 100) :-
nonvar(Rule No),
(var(Cond No), Cond No = 1; true),
(not is knovn([Obj,Attr,Valj, Rule-No, 666, CF),
retracttemp_rules(RuleNo)

* retracttemp_rules(RuleNo),
CF < 10

assert rule trace(RuleNo, CondNo, confirmed-not : [Obj,Attr,Vall).

/* The retracttemprules predicate retracts temporary assertions of */
* /* rules which were placed into the trace mechanism when trying to */

/* solve a negated (NOT) triple. *1
/* ,/
/* Constraints: retract_temp_rules(+). */

retracttemprules(Rule No) :-
* rule trace(Rule No, CondNo, _),

(Cond No >= 666,
retract(ruletrace(RuleNo, CondNo, _))

true
), fail.

* retract_temp_rules(_) :- 1.

/* is-known method 1 *1
/* If a triple has already been determined to fail, either by being *1
/* denied by the user, by being confirmed not to be true, or as */

* /* being a triple concluded by some method to have a certainty */
/* factor of zero, then "is_known(Triple)" fails without further */
/* searching. *1

is known([Obj,Attr,Vall_1, RuleNo, CondNo, _) :-
(denied([Obj,Attr,ValJ)

* ; trace(confirmed not : (Obj,Attr,ValI_])
trace(_ : [Obj,Attr,Val,0)
trace(_ : [Obj,Attr,Val,0] derived-from _)

1, fail.

B-41

0

/* is known method 2 *1
/* If a triple has already been determined to succeed, either by */
I* being confirmed by the user or by its presence in the trace, then *1
/* is known(Triple) will succeed and the search for additional ways *1
I* to find out if the triple is known will be discontinued. *1

is_known([Obj,Attr,Val_I, RuleNo, CondNo, CF) :-
search trace([Obj,Attr,Val,CF),
assert-ruletrace(RuleNo, CondNo, [Obj,Attr,Val,CF]).

/* The search trace predicate searches both the main trace and the *I
/* rule trace to determine if a triple is present in either of the */
/* traces. If it is, the predicate will succeed with some CF.
I* *I

/* Constraints: searchtrace(+,-). */

searchtrace([Obj,Attr,ValJ,CF)
(confirmed(jObj,Attr,Val_j),
CF = 100

trace(: [Obj,Attr,Val,1001),
CF - 150

(trace(_ : [Obj,Attr,VallCF1] derivedfrom _)

ruletrace(_,_,[Obj,Attr,VallCF1])

(CF1 = [1, CF = 100
CF1 = [CF], CF = 100

)
), !.

searchtrace(_,_) :- 1, fail.

/* is known method 3 */
/* If a triple [Obj,Attr,Val] is a valid Prolog fact or goal, */
/* Attr(Obj,Val), and this Prolog term can succeed, then "is known */
/* (Triple)" will also succeed and the search for another way to */
/* find isknown(Triple) is discontinued. */

isknown([Obj,Attr,Valj, RuleNo, CondNo, 100) :-
not(Attr == is),
T =.. [Attr,Obj,Vall,
T, /* Prolog goal Attr(Obj,Val). */

* assertruletrace(RuleNo, CondNo, solved : [Obj,Attr,Val,100),
1.

is known([Obj,=,Valj, RuleNo, CondNo, 100) :-
Obi is Val,
assertruletrace(RuleNo, Cond No, solved [Obj,Attr,Val,100J),

B-42

1* is known method 4
/* If a triple can be found in a frame, assuming all knowledge in *1
/* frames to have a certainty factor of 100, then isknown(Triple) *1
/* will succeed. *1

is known([Obj,Attr,Val], RuleNo, CondNo, 100)
frame : Obj slot Slots,
frame_get(Obj,Attr,Val_List),
member(Val,Val List),
assert rule trace(RuleNo, CondNo, framefact : [Obj,Attr,Val,100).

/* is known method 5 */
/* If the triple is a fact, and the fact is known with a CF of 100, */
/* then further search is discontinued. Otherwise, if a fact can be */
/* found with a CF less than 100, this predicate will return this CF */
/* and the search for additional paths will continue. */

is known([Obj,Attr,Vall_], RuleNo, CondNo, CF)
fact : [Obj,Attr,ValICF1J,
((CF1 = f] ; CFl = [cf,100), CF = 100, 1

CF1 = [cf,CFJ

assertruletrace(RuleNo, CondNo, fact : [Obj,Attr,Val,CF]).

/* is known method 6 */
/* A triple is known If it is the head of a rule and the conditions */
/* of the rule are known. If the rule certainty factor is equal to *1
/* 100 and all the conditions are known with a certainty factor of *1
/* 100 then the is known(Triple) succeeds with a certainty factor of *1
/* 100. */

is known([Obj,Attr,Val, Rule No, Slot No, CF)
Rule : if Conds then [Obj,Attr,ValIRuleCFJ,
retract all(ruletrace(Rule,_,_)),
clean-up_why_trace(Obj,Attr,Val),
asserta(vhy_trace(Rule : (Obj,Attr,VallRuleCF] derivedfrom Conds)),
is knovn(Conds, Rule, 1, CondsCF),
((Rule CF = HJ

Rule-CF = (cf,1001

CF = CondsCF

Rule CF = [cf,RlCF],
CF is CondsCF * RlCF/ 100

assert rule trace(Rule No, SlotNo, Rule (Obj,Attr,Val,CF]
derived from Conds).

B-43

is known method 8 */
/* A triple is known if (a) the rule-base classifies it as "askable" */
/* and if (b) the user confirms it. All explicitly declared ask- *1
/* ables in the rule-base are in the form of: *1
/* "askable : 'Obj Attr Val' derived from Question and Answers" */
/* where Question is the question that will be asked, and Answers */
/* are a list of valid answers. An askable will only be asked if */
/* there is currently not a Obj-Attr-? triple already in the trace. */
/* If the askable is answered, the triple goes into the trace and */
!* is known(Triple) succeeds only if the selected answer matches the */
/* value of Val. In either case, isknown(Triple) is not resatis- */
/* fyable. */

is known([Obj,Attr,Val], RuleNo, CondNo, 100) :-
not in trace(Obj,Attr),
askable : [Obj,Attr,Val] derived from Question and ValidAnswers,
ask_question([Obj,Attr,ValJ,Ouestion,Valid Ansvers,Value,CF),
assert in trace(askable : [Obj,Attr,Value,CFJ),
assert rule trace(Rule No, CondNo, IObj,Attr,Value,CF),
Value - Val,
CF > 10, !.

/* ---------------------- assert rule trace -------------------------- *
/* ,/

/* The assert rule trace predicate stores a temporary trace in the */
/* Prolog database. If the rule succeeds in which this temporary */
/* trace is associated with, then the temporary trace is also as- */
/* serted into the main why trace. Each of these temporary traces */
/* are distinguished from other temporary traces by using the rule */
/* number and the condition number. */

/* *I

/* Constraints: assertruletrace(+,+,+). */

assert rule trace(RuleNo, CondNo, KnownTrpl) :-
nonvar(RuleNo),
nonvar(Cond No),
nonvar(Known Trpl),
retract all(rule trace(RuleNo, Cond No,)),
assertz(ruletrace(RuleNo, CondNo, Known_Trpl)),
1.

/*--------------------------- not in trace ---------------------------
/* *I

/* The not in trace predicate checks both the main trace and the
/* temporary rule traces to see if a fact or rule has already been */
/* been asserted with the same object and attribute pair. If there */
/* are no assertions found, the predicate will return successful, */
/* otherwise, it will fail. */
I* *

/* Constraints: not in trace(+,+). */
/* Both arguments must be atoms. */

B-44

notintrace(Obj,Attr) :-
not
(trace(_ : [Obj,Attrl_])

trace(_ : [Obj,Attrl_] derived from _)

ruletrace(_ , _,_ : [Obj,Attrl_])

ruletrace(, -, : [Obj,Attrl_J derived-from _)

/*------------------------ clean_up_why_trace ----------------------- *

/* The cleanup_why_trace predicate is necessary because when rules */
/* and their conditions are placed into the why trace, they are not */

* /* removed if the rule fails. In such an instance, the why trace */
/* gets cluttered. This predicate increases the efficiency of the */
/* why trace by removing unnecessary assertions. It does this by *1
/* requiring assertions to either be part of the goal itself, or */
/* part of the rule's condition which is just above it in the order */
/* of when it was asserted.

* I* *I

/* Constraints: clean up_why_trace(+,+,+). */
/* Arguments must be atoms. */

cleanupwhy_trace(Obj,Attr,Val)
why_trace(TopWhy),

* (TopWhy = goal : _, I

TopWhy = Rule : Triple derivedfrom Conds,
part_of(Obj, Attr, Val, Conds), I

retract(why trace()),
* clean_up_why_trace(Obj,Attr,Val)

), t.
clean_up_why_trace(Obj,Attr,Val) :- I.

part of(Obj,Attr,Val, Conds) :-
(Conds = [Obj,Attr,Vall_], !

Conds = not [Obj,Attr,Vall_], I

Conds = [Obj,Attr,Vall_I and Rest, I

Conds = not (Obj,Attr,Vall and Rest, I

Conds = [Obj,Attr,Vall_0 or Rest, I

Conds = not [Obj,Attr,Vall_] or Rest, I

B-45

0n • n m

Conds - Triple and Rest, !,
part_of(Obj,Attr,Val,Rest), I

* Conds = Triple or Rest, 1,
part_of(Obj,Attr,Val,Rest), I

I, fail

), I.

S/* ---------------------- explanation facility ------------------------ *

/* The explainwhy predicate explains why a question is being asked */
/* to the user if he requests an explanation. It uses the ABC pred- */
/* icate "justify" to assist in this utility. */
/* */

* /* Constraints: explain_vhy(+). */

explain why(Triple) :-
retract(whytrace(Whytrace)),!,
nl,
justify(Triple,Whytrace),

* (Whytrace = goal :_
true

Whytrace = Rule : Conclusion derived from Conditions,
nl,nl,write('Do you wish to continue Trace? (y/n)
getreply(Rply),

* (Rply = yes,
explainwhy(Conclusion)

true

)

* true

nl,
asserta(why_trace(Whytrace)),?.

/* If the why trace is empty and a question is being prompted to the */

* /* user for which he would like an explanation, then the question */
/* must be from an initial-askable and the only explanation that can *1
/* be given is shown below.

explainwhy(_) :-
nl,tab(2),

* write('The answer to this question is needed to solve the main goal.'),
nl, 1.

B-46

S

/* The justify predicate justifies the goals and rules found in the *
/* why trace by pretty printing them out to the display screen. *

/* Constraints: justify(+,+). *

justify(Goal,goal : Coal) :-
nl,vrite('This will satisfy the goal')
wri telist(Goal),

* write(,.,).
justify(Triple,Rule :Conclusion derived from Conditions) :

nl,write('I can use '),vritelist(Triple),
write(' to help satisfy '),write(Rule),nl,
vrite('vhich if satisfied, vill give me '),
writelist(Conclusion), write(,.,).

1* ------------------------- Frame Representation ----------------------
/* This section is an expanded version of the frame-based knowledge *
/* representation described by Cuadrado, J.L. & C.Y. in "AI in Compu- *
/* ter Vision," BYTE, volume 11, nbr 1, January 1986, pp. 237-258. *

/* Possible Facets: value
default *

1* if needed *
1* if added *
1* if-removed *

--*

/* The frame_get predicate retrieves a list of values from a frame. *
/* It goes through a predetermined search to search for its values. *

/* Constraints: frame_get(+,+,-).

frame get(Frame,Slot,Value List) :- /* First, look for a value *
fget(Frame,Slot,value,Va~lue List),!. /* under the "value" slot *

frame_get(Frame,Slot,ValueList) :- /* attribute, if not found, *
fget(Frame,Slot,default,ValueList),!. /* look at "default", "if- *

frame_get(Frame,Slot,ValueList) :- /* needed", and "ako" slots *
0fget(Frame,Slot,if-needed,[Demonj), /* in that order. *

F =.. [Demon,Frame,ValueListi,
F,!.

frame get(Frame,Slot,Value -List) :-/* Allows for multiple *

0fget(Frame,ako,value,ParentList), /* inheritance. *
member(Parent,Parent List),
assertz(temp trace(via ako : fFraine,Parentj)),
frame_get(Parent,Slot,Value List),!.

B-47

0

/* The frame put predicate puts a value into a frame. It first sees */
/* if there is a "if added" demon associated with the frame and */
/* executes the demon procedure if it is. Othervise, it places the */
/* value into the frame and slot specified under the slot-attribute */
/* of value. If the slot or frame doesn't exist, they are created. */

/* */

/* Constraints: frameput(+,+,+). */

frame_put(Frame,Slot,Value) :-
getrule(Frame,Slot,if_added,Rule),
1,
fput(Frame,Slot,value,Value),
F =.. [Rule,Frame,ValueJ,
F.

frame_put(Frame,Slot,Value) :-
fput(i rame,Slot,value,Value).

/* The frame remove predicate removes all the values for a partic- */
/* ular frame and slot. This includes all slot-attributes. This */
/* deletion effectively deletes the slot. */
/* ,/

/* Constraints: frameremove(+,+). *I

frameremove(Frame,Slot) :-
getrule(Frame,Slot,ifremoved,Rule),

F =.. [Rule,Framel,
F,
repeat,
not fdelete(Frame,Slot,_,_).

frameremove(FrameSlot) :-
repeat,
not fdelete(Frame,Slot,_,_).

/* The fget predicate is the utility predicate which actually does */
/* the work of the "frame_get" predicate. */

/* */

/* Constraints: fget(+,+,+,-). */

fget(Frame,Slot,Facet,ValueList)
frame : Frame slot Slots,
sget(Slots,Slot,Facet,ValueList), I.

B-48

/* The sget predicate is a recursive predicate which obtains the */
/* the values of the given frame/slot/slot-facet combination. */
/* ,/

* /* Constraints: sget(+,+,+,-). */

sget(Slots,Slot,Facet,Value List)
(Slots = [Slot,FacetIValueList], I

Slots = [Slot,FacetlValueList] slot Rest 1, 1

Slots = Slots 1 slot Slots 2, !,
sget(Slots_2,Slot,Facet,ValueList)

), !.

/* The fput predicate is the utility predicate which does the work */
* /* for the frame_put predicate. Given a frame-name, a slot-name, */

/* a slot-facet, and a value, the fput predicate will place the
/* value into that particular frame/slot/attribute combination if it */
/* exists, or create it if it doesn't exist. */
/* */

/* Constraints: fput(+,+,+,+). */

fput(Frame,Slot,Facet,Value)
frame : Frame slot Slots,!,
add value(Slot,Facet,Value,Slots,New_Slots),
retract(frame : Frame slot Slots),
assertz(frame : Frame slot NewSlots), I.

fput(Frame,Slot,Facet,Value) :-
assertz(frame : Frame slot [Slot,Facet,Value]).

/* The add value predicate adds a value to a slot when the frame */
/* is known to exist. If either the slot or the slot attribute is */

* /* not present, then they will be created in order to hold the new */
/* value which is being added. */

/* Constraints: addvalue(+,+,+,+,-).

addvalue(Slot,Facet,Value,Slots,New_Slots) :-
* (Slots = ([Slot,FacetlValues]),

NewSlots = ([Slot,Facet,ValuelValues])

Slots = ((Slot,FacetjValues] slot Rest),
New Slots = ([Slot,Facet,ValuelValues] slot Rest)

* Slots = (Slot 1 slot Slot_2),
addvalue(Slot,Facet,Value,Slot 2,NewSlots_2),
NewSlots = (Slot_1 slot NewSlots_2)

New Slots = ([Slot,Facet,Value] slot Slots)

B-49

0 ||

/* The fdelete predicate will delete a particular value from a frame */
/* if the frame-name, slot-name, slot-facet, and value are provided. */I* ,I

/* Constraints: fdelete(+,+,+,+). */

fdelete(Frame,Slot,Facet,Value)
frame : Frame slot Slots,
delete value(Slot,Facet,Value,Slots,NevSlots),
(New Slots = [1,

retract(frame : Frame slot Slots)

retract(frame : Frame slot Slots),
assertz(frame : Frame slot New_Slots)

/* The delete value predicate will delete a value from a slot and */
/* return a new list of slots if given the slot-name, slot-facet and */
/* the value which needs to be deleted along with the original list *1
I* of slots. *//* ,/
/* Constraints: delete_value(+,+,+,+,-). */

delete value(Slot,Facet,Value,Slots,New_Slots) :-
(Slots = (Slot,Facet,Valuej),!,
NewSlots = [I

Slots = ([Slot,FacetlValues]),!,
remove(Value,Values,New Values),
New_Slots f ([Slot,FacetlNew_Valuesi)

Slots = ([Slot,Facet,Valuel slot Restl),!,
NewSlots = (Restl)

Slots = ([Slot,FacetjValues2J slot Rest2),!,
remove(Value,Values2,New Values2),
New_Slots = ([Slot,FacetTNew_Values2] slot Rest2)

Slots = (List slot Rest3),
delete value(Slot,Facet,Value,Rest3,NewRest3),!,
(New Rest3 = (1,
New-Slots = List

NewSlots = (List slot NewRest3)
)

B-50

/* The get rule predicate will retrieve a demon procedure (rule) */
/* from the frame structure either from the Frame and Slot specified */
/* or from a parent/grandparent of the Frame specified. */

/* */

/* Constraints: get_rule(+,+,+,-). */
/* The third argument must be one of the demon attributes used in */
/* ABC, i.e. if-needed, if-added, etc. */

getrule(FrameSlotTypeRule)
fget(Frame,Slot,Type,Rule).

get rule(Frame,Slot,Type,Rule)
fget(Frame,ako,value,Parent),
getrule(Parent,Slot,Type,Rule).

/* The print_goals predicate prints out the goal's list on the dis- */
/* play monitor with one goal per line. It is used within ABC to */
/* display the goals during a trace. This predicate may be used to */
/* print out any number of OAV triples, which are in list form, */
/* seperated by the ABC defined operator "and". */
I* *

/* Constraints: print_goals(). */

printgoals([]).
printgoals(Goals) :-
(Goals = [Obj,Attr,Val] and Rest

Goals = [Obj,Attr,ValJ,
Rest = []

tab(23),
write(Obj),
tab(3),
write(Attr),
tab(3),
write(Val),
nl,
print_goals(Rest).

/* The write conditions predicate displays the conditions of a rule */
/* in such a way to make it easy to read during a trace. Its a *1
/* "pretty printer" of sorts. It will print out any condition which */
/* ABC is capable of understanding. */

/* */

/* Constraints: write-conditions(+). */

write conditions([X,Y,Z])
tab(8),
writelist([X,Y,ZJ),
nl.

B-51

write conditions(not [X,Y,Z])
tab(4),
vrite('Not')
vritelist(IX,Y,ZI),
nl.

write conditions(IX,Y,ZJ and Conditions) :

tabT8),
writelist((X,Y,ZI),
write(' and'),
ni,
write conditions(Conditions).

write conditions(not [X,Y,Z] and Conditions)
tabT4),
write('Not')
writelist((X,Y,ZJ),
write(' and'),
ni,
write conditions(Conditions).

write-conditions(IX,Y,ZI or Conditions)

0 tab(8),
writelist([X,Y,ZJ),
write(' or'),
ni,
write conditions(Conditions).

write conditions(Conditionsl or Conditions2)
0 write conditions(Conditionsl),

tab (8),
write('or'),
ni,
write conditions(Conditions2).

write conditions(not [X,Y,ZJ or Conditions)
* tabT4),

write('Not')
writellst(JX,Y,ZJ),
write(' or'),
ni,
write-conditions(Conditions).

/* The convert to list predicate converts an atom to a list of words *
/* which the atom originally had separated by spaces. In ABC, this *
/* predicate was used to convert a quoted triple into a triple in *
/* which the object, attribute, and value were in a list form. *

* /* Constraints: convert_to_triple(+,-). *

convert -to -list(AtomTriple, ListTriple)
atomic(AtomTriple),
name(AtomTriple, ASCIIList),
tokenize(ASCIIList,[J,ListTriple).

B-52

/* The tokenize predicate was derived from Claudia Marcus's book, */
/* "Prolog Programming", pp 205-209. This predicate will take a */
/* list of ASCII numbers, and convert them to a list of words. A */
/* word will be defined as anything which can be found before, */
/* between, or after an ASCII 32 (a space) and which can be con- *I
/* verted from its ASCII form back to an atom. */

I* *I

/* Constraints: tokenize(+,+,-). */

tokenize([J,List,List).
tokenize([321T1,List,L)
1,
tokenize(T,List,L).

tokenize([HITI, List, L)
get rest word(T,[HJ,Word,Rem),
append(List,[Word],NewList),
tokenize(Rem,NewList,L).

/* The getrestword predicate is used in conjunction with the */
/* tokenize predicate. The get rest word predicate, once the first *1
/* letter of a word is seen, will go through the ASCII list append- */
/* ing ASCII numbers to the tail of a temporary list until it sees */
/* an ASCII 32 (a space), or it runs out of ASCII numbers. In
/* either case, it converts the temporary list of ASCII numbers to */
/* an atom and returns this atom as the word. */
I* ,I

/* Constraints: get restword(+,+,-,-). *1

getrest_word([I,List,Word,[I)
I,
name(Word,List).

get rest word(132T1,List,Word,T) :-
name(Word,List),
I.

get rest word([HITI,List,Word,X)
append(List,[H],NList),
getrestword(T,NList,Word,X).

B-53

/* The get_reply predicate gets the next character placed into the */
I* current input device and determines whether its a carriage return,*/
/* a "y", a "n", a "w", or something else. If next character is */
/* either a carriage return or a "y", then get_reply will return the */
/* atom "yes". If the character is a "n", it will return "no". If */
/* the character is a "w", it will return "why". If the character */
I* is anything else, it will prompt the user to reenter the char- */
/* acter. */
/ * */

/* Constraints: get_reply(-). *I

get_reply(Reply) :-
getO(User_Reply),nl,
(UserReply = 13, Reply = yes,! /* Carriage Return */
User_Reply = 121, Reply = yes,!
UserReply = 110, Reply = no, I
UserReply = 119, Reply = why,!

nl,nl,
write('You must enter either a "y" or a "n", or if you wish,'),
nl,write('just hit a return for yes.'),
get_reply(Reply)),!.

/* ------------------------------ readline --------------------------- *
/* ,/

/* This ABC predicate allows the user to respond to a prompt with- */
/* out the requirement that the user's response be a proper Prolog *1
/* term. It will allow letters and numbers and a few symbols to be */
/* entered in via the keyboard. It will also allow the deletion of */
/* the last character using the backspace-rubout key. */
/* */

/* Constraints: readline(+,-). */

readline(Temp List,Line)
getO(Char),!,
(Char = 13,!,nl, /* If the return key is pressed, */
reverse(Temp List,LineList), /* the ASCII list is reversed */
name(Line,LineList) /* and the line is generated. */

Char = 8,1, /* If the rubout key is pressed, */
put(32),put(8), /* we go back a space, put in a */
Temp List = (HeadiTaill, /* blank, go back again and then */
readline(Tail,Line) /* go on with our corrected list.*/

identifier(Char),!, /* We place all identifiers in *1
readline([CharlTempList],Line) /* ASCII list and continue. */

Char = 32,!, /* We place blank spaces into */
readline([32tTemp_List],Line) /* ASCII list and continue. */

readline(TempList,Line),! /* All other inputs are ignored */
), !. /* but we continue to read. */

B-54

/* ---------------------------- Utilities ------------------------------ 1

reverse([],[]).
reverse((XjLJ,K) :

reverse(L,N),
append(N, [XJ ,M).

remove(_,(],[]).
remove(X,[XILJ,K) :

remove(X,L,M).
remove(X,IYILJ,IYIMJ)

remove(X,L,M).

writelist(II).
writelist((XjLJ)

write(X),
tab(1),
vri telist(L).

niember(X, (XI 1).
member(X, [IYJ) :

member(X,Y).

retract all(X)
retract(X),
fail.

* ~retract-all(_) -!

append([J,List,List).
append([XILJ,M,[XINJ)

append(L,M,N).

* /* The function of the cls predicate is to clear the screen (CRT). *
/* The cls predicate is not used in Arity Prolog because it is pre- *
/* defined there. However, in Prolog-l or other Prologs where it is *
1* it not predefined, the following predicate will suffice. *

cls :

* nl,nl,nl,nl,nl,nl,nl,nl,nl,nl, f.

B-55

USER'S KANUAL - Appendix C

* The AFIT Backward Chainer (ABC)

Expert System Shell

Introduction

The ABC expert system shell (ESS) was designed to assist students

* pursuing the Artificial Intelligence (AI) sequence at AFIT. The Prolog

code which makes up ABC is entirely written in standard Prolog, sometimes

referred to as the Clocksin and Mellish (C&M) dialect. For the Prolog

* student, this means that the predicates within ABC can be studied or used

in other similar programs. To the students who are mainly interested in

building expert systems, this ESS provides several features which are

* usually found in commercial ESSs. Thus to these students, ABC can prove

to be a good source of study to see how AI techniques and data structures

are used in an ESS.

* ABC uses the built-in backward chaining, top-down control-mechanism

of the Prolog interpreter, via the ABC predicate is known/l, to provide

its inference engine. ABC has two basic types of knowledge

* representations: production rules and frames. Production rules allow

"rules of thumb" to be utilized to capture the expertise, while frames

allow the efficient and natural data structure necessary for many types

* of domains in which commercial ESSs are commonly used.

This user's manual consists of six parts. The first part is this

introduction. The second part explains how to get into and out of ABC.

* It also explains a couple of points about installing and/or configuring

C-i

the ABC ESS. The third part shows all of the commands found in ABC,

usually followed with an example of how they can be used. The commands

are listed in alphabetical order to aid the user as a reference. The

fourth part explains the knowledge structures of ABC and gives guidance

on creating a knowledge base. The fifth part is for those users wishing

to use demons in their ABC frames. The last section of this manual will

step the beginning user through a vine advisory consultation.

c-2

0 Il

Starting and Exiting ABC

Before You Start ABC - Since ABC is written in Prolog, the Prolog

interpreter has to be loaded prior to using ABC. Consult your Prolog

Interpreter's user's manual to determine how to load and consult Prolog.

However, before loading the Prolog interpreter there is something you

must consider. Special care was taken to write the code for ABC so that

it would be portable to all computer environments having a C&M Prolog

interpreter available. Host Prologs are a superset of C&M Prolog and

thus some of the predicates defined in ABC may be included as built-in

predicates of the Prolog interpreter you are using. If this is the case,

you will need to "comment out" the ABC code which defines these

predicates prior to using ABC or error warnings may appear.

There is no standardization in Prolog operator's precedence. Yet

there exists two paradigms which are incompatible with each other. Most

Prolog interpreters subscribe to one or the other of these operator

precedence paradigms. Figures 1A and 1B show the ABC defined operator

precedences and how they are defined in Arity Prolog and Prolog-1,

respectively. Your disk should contain the Prolog source code for both

Arity and Prologl. If you are not using one of these three interpreters,

consult your Prolog manufacturer's user's manual to see which one of

these two paradigms are used and set your operator's precedence levels

accordingly. If you have problems, or you get operator error messages,

you will need to obtain assistance from your Prolog manufacturer's

service center.

c-3

:- op(990, xfx, =).
:- op(980, xfy, :).
:- op(975, xfx, then).
:- op(970, xfy, slot).
:- op(970, fx, if).
:- op(965 , xfx, derivedfrom).
:- op(9 60, xfy, or).
*-op(955, xfy, and).

Figure 1A: ABC Operator Definitions in Arity Prolog

?- op(250, xfx, :).
?- op(245, xfx, then).
7- op(240, xfy, slot).
?- op(240, fx, if).
?- op(235, xfx, derivedfrom).
?- op(230, xfy, or).
?- op(225, xfy, and).

Figure 1B: ABC Operator Definitions in Prolog-1

flov to Start and Exit ABC - After the above steps have been completed and

your Prolog interpreter is awaiting your input, use Prolog's built-in

consult predicate to consult ABC. Most Prologs default to some

predefined extension if one is not provided, so be careful and provide

the extension if you are unsure about your Prolog interpreter. A typical

consultation for using ABC on the Arity Prolog interpreter on the Z-248s

(or IBM AT compatible) is shown below.

consult('abc.ari'). or consult(abc).

The Prolog consult commands listed above assumes that the ABC code has

the extension of ".ari" and that this file exists on the current drive.

Your input command to consult ABC may be quite different.

C-4

Once ABC is consulted, it will start up automatically providing you

with an introduction screen. This screen will remind you to always use

lower-case letters for commands and replies. A key point to observe here

is that once you are in ABC, the prompt will change to "ABC >." If you

don't see this prompt then you are not in ABC and you may need to get

some assistance.

At the ABC prompt, you may type in one of several ABC commands. All

of the commands will be explained in detail later in this user's manual.

If you have a problem remembering commands, it is a good idea to remember

at least the ABC command "commands." The "commands" command will provide

a listing of all the commands available to you in the ABC ESS. Another

0 helpful hint to new users is the command "help." The "help" command will

provide some assistance to new users on a few of the more basic ABC

commands.

0 If for some reason you are forced to leave ABC and go back into the

underlying Prolog interpreter, you should always be able to re-enter ABC

by typing the command "start." Usually, most information such as your

rules, facts, frames, and assertions should be retained by the underlying

Prolog interpreter. You can check this out with any of the "review"

commands available in ABC.

0 Although ABC activates itself once you consult It into working

memory, it does not bring with it any domain knowledge. You must provide

the domain knowledge in the form of files which have frames and/or rules

* and/or facts via the use of one of the two ABC "load" commands. You may

load more than one file providing the rules and/or data don't conflict.

A second method of entering knowledge into working memory is through the

C-5

0

use of one or more of ABC's "add" commands, but this is not recommended

except for adding small amounts of knowledge for testing.

Once you have entered the domain knowledge, you must provide ABC with

one or more goals. You may load goals into working memory by including

them in your knowledge base and have them loaded along with your

knowledge, or you may load goals by using the ABC "add-goal" command.

After your knowledge base and goal(s) are loaded into working memory,

you are then ready to start a consultation with ABC to resolve your

goals. You may initiate a consultation with ABC by either the "go" or

"consultation" commands. They are both identical. ABC will search your

knowledge base during a consultation, asserting and deleting data and

structures in order to solve your goal(s). If no solution can be found,

a message to that effect will be presented.

To leave ABC naturally and go back to the Prolog interpreter, you

must use the ABC "quit" command.

C-6

ABC Commands

All ABC commands are typed at the ABC command prompt. No parameters

are ever passed with the ABC commands. The following is a complete

description of all the ABC commands In alphabetical order.

add-frame

The add-frame command will add frames to the knowledge base via the
SI

keyboard. This is not recommended to enter in large number of frames in

this manner. The ASCII file which makes up your knowledge base should be

edited for large number of frame additions.

If you wish to add a either a frame-slot or a slot-value to a pre-

existing frame, this command can also be used in this fashion. ABC will

not erase a frame in favor of a newer addition; it will always append

slots and slot-values when frames already exist with the correct name. A

frame can be added in a manner similar to the example shown below.

ABO add-frame

ABC add frame

Frame Name (or quit) : afit student

Slot Name class

Facet Type default

Slot Value: gce

Example of Adding a Frame Using the add frame Command.

C-7

The frame name is generally an object and the slot name is usually

the object's attribute. The slot value is usually the value associated

with the slot name. If more than one exist, the add-frame procedure must

be accomplished for each value. The facet type must be either "value",

"default", "if-needed", "if-added", or "if-removed". If either of the

last three facet types are used, the slot value will then become the name

of the associated demon procedure. Refer to part five of this user's

manual for more information on demon procedures.

add_goal

The add_goal command allows the user to enter a goal into the

knowledge base. Adding a new goal to the knowledge base does not delete

any goals which may have pre-existed. Using the add goal command appends

a new goal to the front of the goals list. If the goal must be placed

somewhere other than at the front, a combination of deletegoal and

addgoal commands must be performed. An example of adding a goal to the

knowledge base is shown below.

ABC> addgoal

Enter in the nev goal in the form of an OAV triple.
(i.e. graduationclass is Class)

ABC add__goal > recommendedwine is Wine

Example of Adding a Goal Into The Knowledge Base

Notice that the OAV triple is entered with only one or more spaces

separating the individual components of the triple. Do not attempt to

use a carriage return between the individual components of the triple. A

carriage return identifies the end of an addgoal entry.

C-8

commands

The command "commands" will present a listing of all of the current

ABC commands which are available to the user.

consultation

The command consultation will start a new consultation. The command

"go" is synonymous with the command consultation.

delete_goal

The command delete_goal will delete a goal from the goal list

regardless of its relative location in the goal list. The goal you wish

to delete must be an OAV triple. An example of goal being deleted is

shown below.

ABC > delete_goal

Enter goal to be deleted.
(i.e. recommended vine is Vine)

ABC deletegoal > tweetie owner Owner

Example of Deleting a Goal Using The delete-goal Command

If you try to delete a goal that does not exist, ABC will continue to

its main prompt and ignore your request for deleting the goal.

C-9

go

The go command is the functionally equivalent to the consultation

command. Since it is shorter to type in, most users may prefer to use

this command as opposed to the consultation command.

help

The help command gives basic information about the five commands

which beginning users would normally use most often. The five commands

are: "load", "removekb", "consultation", "restore", and "quit".

import

The import command consults Prolog code directly into the Prolog

database without going through any intermediate steps. An example of

this command is shown below.

ABC > import

This ABC command imports Prolog code into the Prolog database.
Do you vish to continue? (<y>, n): y

What is the full name of your file?
ABC import > a:pets.aux

Example of The import Command

load

The load command is used to load a knowledge base from a file to the

Prolog database. There are two types of knowledge bases: the one with

user-friendly quoted triples and the one with triples structured in

Prolog lists. The user-friendly knowledge base file should have the

C-10

extension of ".kb". When it is first loaded, it is parsed in order to

convert all of its quoted triples into Prolog lists. This conversion

process creates a second file with the same prefix as the ".kb" file, yet

with the extension of ".abc". Since ".abc" files will load much faster

than the ".kb" files, always load the ".abc" file if a current copy

exists.

An example of loading a knowledge base file is shown below.

Enter the name of the file vhere your knowledge base is stored, or
enter <Return> to abort.

Filename, including path is: c:\abc\kb\wine

Example of Loading a Knowledge Base File

Notice in the example that if you wish to abort the load operation

after executing it, just press the Return or Enter key.

quit

The quit command is the only natural way to terminate ABC.

remove kb

The remove kb command removes a knowledge base from the Prolog

database. It does this by removing all of the facts, frames, and rules.

This command will give adequate warning and will allow you to abort the

operation if you deem necessary. This command does not remove any demon

procedures or other user-defined Prolog predicates which may have been

loaded in via an auxiliary file.

C-Il

restore

The restore command removes any assertions made in previous

consultations from the Prolog database. This command differs from the

remove kb command because it does not remove any of the facts, rules, or

frames. If you have made mistakes during a consultation and wish to

start over without reloading the knowledge base, you may use the restore

command.

revievwframe

The review-frame command allows you to review any frame which is

present in the Prolog database. It will prompt you for the frame's name.

It will then display the contents of one of the frame's slot on the

screen. Additional slots will be displayed by depressing the space bar.

revievgoals

The review-goals command allows the displaying of all the goals which

are currently in the Prolog database.

review-rules

The review-rules command allows the displaying of any of the rules

which are currently in the Prolog database. Both the rule's premise and

conclusion will be displayed.

rules

The rules command displays ABC's syntax rules. This command is

primarily for the newer users.

C-12

save wm

The save_wm command allows you to save the working memory portion of

the knowledge base to a file. This will allow your knowledge base to

learn and will prevent you from answering the same questions repeatedly

from one consultation to another.

syntax

The syntax command is used if you are getting Prolog system errors

when loading your knowledge base. This command will aide in detecting

where syntax errors exist in your knowledge base. The syntax command

reads your knowledge base file one term at a time and displays it on the

screen. When you reach an error, if the error was caused by incorrect

syntax, then the syntax problem is located in the term following the last

successfully read term.

trace

The trace command is used after a consultation to determine the steps

ABC took to derive its solutions. The steps can be viewed from the

latest to the earliest one at a time by pressing the space bar. If you

wish to abort the trace operation, press the Return or Enter key.

0

C-13

Roy To Create A Knovledge Base

Basic Structures in ABC - There are four basic structures used in ABC to

build a knowledge base: the fact, the frame, the rule, and the askable.

• Just as in any programming language where there may be several ways to

use the language's structures to get the same result, you can develop

functionally equivalent knowledge bases in ABC using different

* combinations of structures. To continue this analogy, using the wrong

structures in a programming language which produces inefficient or

difficult to read code would be similar to using the wrong knowledge

* structure in ABC. It is therefore important to know each of the

structures in ABC and to know when to properly use them.

* Facts - Facts in ABC are used to assert a small amount of knowledge about

some object. Specifically, the fact provides a known value for an

attribute of the object. If the object has several relevant attributes

* and/or values, the fact structure might be a poor choice. If the object

is related hierarchically with other objects, then the fact structure

should be abandoned for the frame structure.

* Facts are easy to write. To write a fact which states that the Math

555 course is difficult with a certainty of 95 can be seen in the example

below.

* fact: math555 is difficult cf 95.

C-14

0

If you do not need certainty factors in your knowledge base, you can

* leave them off your facts. Facts without an explicit certainty factor

have a implicit certainty factor of 100.

* Frames - The frame structure is appropriate when you have hierarchical

relationships among objects. It may also be appropriate when an object

has several attributes or several values for any given attribute.

* Frames in ABC represent some object. The slots of a frame represent

the attribute of the object. A frame can be linked hierarchically to

other frames by having a slot called "ako" with its slot-value as a list

* of other frames which are higher in its hierarchical tree. An example of

a frame which has an hierarchical value can be seen in the example below.

frame : tweetie
slot 'ako value canary'
slot 'owner value joe sherry'
slot 'born if needed ask dob'
slot 'age ifneeded findage'.

Example of a Hierarchical Frame

The basic structure of a frame can be seen in the example above. The

frame-name or the object of the frame is "tweetie". The first slot is

where the "ako" (a kind of) link is provided to the frame called

"canary". The second slot has the name "owner" and has a slot-attribute

of "value". The slot "owner" has two values: "joe" and "sherry". The

third slot, called "born", has a slot-attribute of "if needed". Whenever

the slot-attribute is "value" or "default", then the slot-value is a list

of values. But when the slot-attribute is either "if needed",

C-15

"if-added", or "ifremoved", the slot-value is a demon procedure. So in

the third slot, ABC would execute the procedure "ask dob" in order to

acquire tweetie's birthyear.

If you develop a knowledge base which includes frames with demon

procedures, you must make sure that you also write demon procedures in

accordance with part five of this user's manual.

* Rules - Rules are a way of expressing known relationships or heuristics

(rules of thumb). In ABC rules take on the general format shown in the

example below.

rule 18 : if 'main-component is poultry' and
'meal includes turkey'

then 'best-color is red cf 80'.

Example of A Rule in ABC

This rule can be interpreted fairly easily. If the main component of

the meal is poultry and the meal does include turkey, then the best color

for the meal's wine is red with a relative certainty of 80.

The best time to use rules is when the nature of the knowledge fits

into the "If A and B and C THEN Z" structure.

Each rule must have a unique rule number which is not maintained by

ABC.

C-16

Askables - There are two types of askables: initial and ordinary. They

have a lot of similarities and only one difference. Askables are used

when you want to get information from the end-user. If you are

developing a knowledge base which requires the person's weight, height,

and sex to determine risk due to coronary disease and it is not feasible

to build a frames, then askables would probably be appropriate. To

create an askable you must make up a straight-forvard unambiguous

question and be able to enumerate the valid solutions. ABC also imposes

a limit of nine valid solutions per askable. An example of an askable

can be shown in the example below.

askable : 'sauce is Sauce Type' derived from
"What kind of sauce is it?" and 'spicy sweet cream tomato'.

Example of An Askable

The structure of the askable starts with the key word "askable" or

"initial askable" (the only structural difference between an initial and

ordinary askable), and is followed by a semicolon and a quoted OAV triple

(the value of the triple may be a variable). If the value of the object-

attribute pair is a variable, the variable becomes instantiated to the

end-user's choice. Notice that the question is flanked by a set of double

quotes and the list of valid solutions (spicy, sweet, cream, and tomato)

are flanked by a set of single quotes and that the question and valid

C-17

c-

solutions are separated by the key word "and". The way this askable will

* be displayed to the end-user can be shown in the example below.

What kind of sauce is it?

* 1. spicy
2. sweet
3. cream
4. tomato

Enter Number (or v for why) > 3

Example of An Askable Prompt

The "why-trace" is invoked by pressing the letter "V" instead of

choosing a number.

C-18i-

Boy To Vrite Demon Procedures

Demon procedures in frames, written in standard Prolog, allow for

automatic frame maintenance. If a frame called "john doe medical record"

* has the slots "doctor", "current treatment", "date last treated", along

with several typical medical record slots, then a demon procedure to

notify the doctor in the "doctor" slot when the current treatment is

* altered may be appropriate. Maybe a demon procedure to update the "date

last treated" slot whenever the current treatment changes might be

useful. Once these demon procedures are in place, the action which they

* preform is hidden from the end-user and thus costly mistakes can be

avoided.

There are three types of demons in ABC: "if needed", "if-added", and

* "if removed". Each of these three types of demons are further described

below.

The "if needed" demon is used when the developer either can not or

* does not want to provide a value for an attribute of some object. If the

value is subject to change with time (i.e. age), then rather than

assigning a numerical value to the facet which will need continuous

* updating, it might benefit the developer to use a demon. If the facet is

'age', then a procedure to acquire the date and calculate the age may be

preferable to placing the actual age into a 'value' facet. An example of

* a "if-needed" demon is shown on the following page.

C-19

0

0

findage(Animal, [Age]) :-
frameget(Animal,born,(Birthyri),

* nl,nl,
vrite('What year is this? (yyyy): ')
read year(Year),
Age is Year - Birthyr.

* Notice in the example "if-needed" demon that the demon predicate has

two arguments with the second argument being a list. This must be the

case for any "if-needed" demon created if it is to operate properly in

• ABC.

The "if-added" demon is used when the developer wishes an action to

be performed automatically, from the perspective of the end-user,

* whenever a value is added to a particular frame. The construction of a

"if-added" demon procedure is identical to that of the "if needed"

procedure and thus will not be repeated.

The "if-removed" demon is used when the developer wants a certain

action to be performed when a slot-value is removed from a slot. Again,

the construction of a "if-removed" procedure is no different than either

the "ifneeded" or "ifadded" procedures.

Note that all three types of demon procedures have to be written in

standard Prolog. The developer may make use of predicates defined by ABC

in defining his demon procedures.

C-20

A Typical Session Vith The Vine=Knoviedire Base

Step One Make sure that you have a copy of the files called "WINE.KB"

and "VINE.VM" on the current disk drive. These two files are the static

knowledge base and working memory for the wine advisor.

Step Tvo Execute the Prolog interpreter and consult ABC. Notice that

the screen will display ABC's syntax rules and then provide the ABC

prompt. Type in the ABC command "load". Notice that ABC nov prompts you

for a filename. Type in the filename "wine.kb". This tells ABC that you

wish to load in the wine advisory knowledge base. After a brief delay,

ABC should prompt you to see if you would like to also load in working

memory. Just press the return key; ABC will read in the default reply of

yes. The next two prompts which ABC will generate, the loading of an

auxiliary file and starting a consultation, need to be answered by typing

in "n" for "no".

There is no auxiliary file to read; trying to read a file which does

not exist will result in a Prolog level or operating system level error.

The reason for not starting a consultation is that the knowledge base

"vine.kb" has no preset goals, thus execution of any knowledge base

without a goal will result in ABC not being able to generated a solution.

Step Three Type in the ABC command "review_goals" to prove to yourself

that there are no goals in the Prolog database.

C-21

Step Four Nov add a goal to the database by typing the ABC command

* "addgoal". Notice that ABC provides you with instructions on how to

enter the goal and also prompts you with a different type prompt. Type

in the goal "recommended-vine is Wine" without the quotes and press

* return. Notice that you are returned to the ABC level prompt.

Step Five Type in the ABC command "review_goals" again to see the new

goal displayed. Notice that the variable has been replaced by some

* internal Prolog variable pointer.

Step Six Type in the ABC command "review_frame" to review one of the

vine advisor's frames. Note that ABC will prompt you for the name of a

• frame. In response to this prompt, type in the frame name "chardonnay",

again without the quotes. Notice that ABC will display the first slot

(color), its associated facet (value) and the values of the slot (white).

Press the space bar twice to review the other two slots of the frame and

notize that the ABC level prompt is ready for your next instruction.

Step Seven Type in the ABC command "commands" and press return. Notice

that ABC will display all of the ABC commands.

Step Eight Type in the ABC command "go" and press return to start a

consultation session. Notice that ABC prompts you with a question about

the main component of a meal. Let us assume that the main component of

the meal is meat, so type in the number "1" which corresponds to the

valid answer "meat".

ABC should now prompt you for whether the meal has a sauce or not.

Let us assume that it does and reply according. Type in the number "1".

Now you should see a prompt asking you for the flavor of the meal.

Let us assume that we have an average meal and type in the ;umber "2".

C-22

The next prompt should be asking you to enter what type of sauce is

being used on the meal. Type in the letter "w" for why and notice how

ABC explains why a question is being asked. Type in "n" when prompted

for addition trace. Notice that the question is asked again. Let us

assume that we will be using a tomato sauce and enter the number "4" in

at the prompt.

You should now be prompted with the question of whether your meal has

veal in it. Reply negatively by typing in the number "2".

The next prompt will ask you what level of sweetness you prefer in

your wine. Type in the number "3" corresponding to the answer "sweet".

Notice that after a short delay, that the solutions are displayed on your

monitor. You should have three different types of wines being suggested

for your meal each having a certainty factor associated with it. The

wine Gamay had the greatest certainty factor (cf = 60), and can thus be

considered as the best wine for the meal.

Step Nine Press any key to continue. Notice the prompt about saving

working memory. Type in "n" for "no" and you should be back at the ABC

level prompt.

Step Ten Type in the ABC command "trace" and press the return key.

Notice a goal being displayed. Press the space bar several times to

continue displaying the trace and then press the return key to exit the

trace before it completes. Reenter the ABC command "trace" and press the

space bar repeatedly until the trace is complete. Notice that obtaining

the trace can be accomplished several times to any point and then

terminated without removing the trace from the Prolog database.

C-23

0!

Step Eleven Nov that the consultation is over lets remove all the

information learned from this consultation in preparation for another

consultation. Type in "restore" to restore the Prolog database and

answer the following safety prompt affirmatively. Now type in the ABC

prompt "trace" to see what is in the trace mechanism. Notice that the

trace is empty.

Step Tvelve Now you are ready to start a new consultation, by typing

"go", or exit ABC by typing the command "quit".

If you cannot remember an ABC command, remember to type in the

command "commands" or "help".

C-24

S

Appendix D: ABC Predicates

This appendix is a reference guide to all the ABC defined

predicates. Each predicate in this appendix will have a brief

description of their function along with any constraints which may be

imposed for proper operation. While some safeguards have been made to

prevent these predicates from not behaving erratically when they are

used outside of their constraints, it was impossible to completely

safeguard against user-induced errors because Prolog has very little

error-exception capability.

The ABC predicates are listed in alphabetical order. Any of these

predicates can be used in user-defined predicates or demons provided ABC

is consulted prior to their use.

D-1

add value 15

The add-value predicate adds a value to a slot when the frame is

known to exist. If either the slot or the slot attribute is not present,

then they will be created in order to hold the new value which is being

added.

Constraints: addvalue(+,+,+,+,-).

ask initial askables /0

The ask initial askables predicate searches the Prolog database for

'initial askables' and if found, asks the user a question and prompts him

for a reply. This will continue until all the 'initial-askables' are

asked.

Constraints: All initial askables in the Prolog database must be

structured in accordance with the ABC user's manual.

ask question /5

The askquestion predicate checks to see if the question from an

askable can be asked. If the OAV triple associated with the question is

already in the trace, then the question will not be allowed. The

askquestion predicate sets up how the question is asked, gets the user's

reply to the question, and asserts the appropriate OAV triple in the

trace mechanism. It also allows the user to inquire as to "why" a

question is being asked.

Constraints: askquestion(+,+,+,-,-).

D-2

0i

assert goals /1

* The assertgoals predicate asserts goals into the trace mechanism if

the goals are solved.

Constraints: assert_goals(+).

assert in trace /2

The assert in trace predicate asserts one of the ABC structures into

the trace. If the structure already exists in the trace, then it will

not be asserted a second time. If a fact, confirmed assertable, or a

rule already exists with the same OAV triple as a solution, then the

• original OAV triple's CF will be adjusted to reflect the additional

support but the new structure will not be placed into the trace. If

neither of the above situations are present, then the structure is placed

* into the trace mechanism.

Constraints: assert in trace(+). The argument must be a valid ABC

structure (i.e. 'fact: [O,A,VI) or the rule number of a top level rule

* which solved the goal.

assert rule trace

* The assert rule trace predicate stores a temporary trace in the

Prolog database. If the rule succeeds in which this temporary trace is

associated with, then the temporary trace is also asserted into the main

* 'why' trace. Each of these temporary traces are distinguished from other

temporary traces by using the rule number and the condition number.

Constraints: assert rule trace(+,+,+).

6-3
'0

/M m miJI 3

calculate CF /3

The calculateCF predicate takes as its two input arguments, two

certainty factors, which it uses to calculate the combining certainty

factor based upon the formula Combined CF = CF1 + (lO0-CF1)/100 * CF2.

Constraints: calculateCF(+,+,-). The two inputs must be either

lists, empty or with one number between and including zero to one-

hundred, or just the number between with the same constraints. The two

types cannot be mixed.

change /1

The change predicate controls the changing of the term read from the

".kb" format to the ".abc" format and writes the new format out to the

new file with the new extension. For purposes of recursive programming,

0 it then calls the makeftle predicate which will read another term and the

process is then repeated.

Constraints: change(+). Same constraints as the "makefile"

-• predicate.

check /2

• The check predicate checks a filename for the proper extension. If

the extension of the filename provided is either ".kb" or ".abc" then the

extension name is returned; otherwise, the "check" predicate fails.

*Constraints: check(+,-).

D

D- 4

S

check ext /2

* The checkext predicate is used in conjunction with the "check"

predicate. The check ext predicate tries to match the extension of a

filename with either "kb" or "abc" in the form of ASCII lists.

* Constraint: checkext(+,?). The first argument must be a list.

circulate trace

* The circulatetrace predicate actually does all the work which the

'replacetrace' predicate is responsible for. It circulates the trace

clauses in the Prolog database, popping off' clauses from the top of the

* stack and placing them back on the bottom, until the entire stack of

trace structures have been moved back to their original position.

Additionally, it replaces the CF of the old trace structure with the new

* CF in the shuffle.

Constraints: circulate trace(+). The argument must be a valid ABC

knowledge structure.

clean up why trace

The clean up whytrace predicate is necessary because when rules and

* their conditions are placed into the why trace, they are not removed if

the rule fails. In such an instance, the why trace gets corrupted. This

predicate increases the efficiency of the why trace by removing

* unnecessary assertions. It does this by requiring assertions to either

be part of the goal itself, or part of the rule's condition which is just

above it in the order of when it was asserted.

* Constraints: clean up whytrace(+,+,+). Arguments must be atoms.

D-5

0

0

cla /0

* The cls predicate simply clears the current screen. In Arity

Prolog, this predicate is built-in.

* condition /2

The condition predicate takes triples which were read using ABC's

readline predicate and converted from the quoted triple form to the list

• form and then writes them out to a temporary file called ABC.TMP. It

then reads the file back into the Prolog database using the Prolog read

predicate. This is necessary because words written beginning with an

*• underscore or a capital letter is meant to be a variable but ABC's

readline predicate cannot do this without using the Prolog reader.

Constraints: condition(+,-).

convert filename /3

The convert filename predicate takes a filename and a new extension

* and returns a filename with the same prefix yet with the new extension.

Constraints: convert filename(+,+,-).

* convert term /2

The convertterm predicate converts a user-friendly term to one

which ABC can understand internally. The convert-term predicate is used

* only on ABC data structures. It will eventually replace all the single

quoted triples such as 'amy loves john' to a list structure such as [amy,

loves, john] which is what the inference mechanism of ABC requires.

D-6

0

0

Constraints: convertterm(+,-). This predicate may not work on

structures other than those structures define in ABC.

convert triple /2

The convert_triple predicate will parse through a quoted atom and

tokenize the atom into a list of words. See the comments about the

predicates "tokenize /3" and "get_restword /4" for a more detailed

explanation.

Constraints: convert_triple(+,-). The first argument must be a

list of ASCII numbers.

convert to list /2

The converttolist predicate converts an atom to a list of words

which the atom originally had separated by spaces. In ABC, this

predicate is used to convert a quoted triple into a triple in which the

object, attribute, and value are in the form of a list.

Constraints: convert to list(+,-).

delete value /5

The delete_value predicate will delete a value from a slot and

return a new list of slots if give the slot-name, slot-facet and the

value which needs to be deleted along with the original list of slots.

Constraints: delete_value(+,+,+,+,-).

D-7

digit /1

The digit predicate tests to see if an ASCII number symbolizes one

of the digits between and including zero through nine. The predicate

succeeds if it does symbolize a digit and fails if it does not symbolize

• a digit.

Constraints: digit(+). Same as the predicate 'letter'.

* display intro screen /0

The display_introscreen predicate simply displays the introductory

message on the display device.

Constraints: None.

explain vhy /1

The explain-why predicate explains why a question is being asked to

the user if he requests an explanation. It uses the ABC predicate

'justify' to assist in this utility.

Constraints: explain_vhy(+).

fdelete /4

The fdelete predicate will delete a particular value from a frame if

the frame-name, slot-name, slot-facet, and value are provided.

Constraints: fdelete(+,+,+,+).

D-8

I I I IIIII

fget /4

The fget predicate is the utility predicate which actually does the

work of the 'frameget' predicate.

Constraints: fget(+,+,+,-).

fput /4

The fput predicate is the utility predicate which does the work for

* the frame_put predicate. Given a frame-name, a slot-name, a slot-facet,

and a value, the fput predicate will place the value into that particular

frame/slot/attribute combination if it exists, or creates it if it does

* not exist.

Constraints: fput(+,+,+,+).

frame get /3

The frame_get predicate retrieves a list of values from a frame. It

goes through a predetermined search to obtain its values.

* Constraints: frame_get(+,+,-).

frame put /3

* The frame_put predicate puts a value into a frame. It first sees If

there is a 'if-added' demon associated with the frame and executes the

demon procedure if it is. Otherwise, it places the value into the frame

• and slot specified under the slot-attribute of 'value'. If the slot or

frame does not exist, they are created.

Constraints: frame_put(+,+,+).

D-9

S

frame remove /2

The frameremove predicate removes all the values for a particular

frame and slot. This includes all slot-attributes. This deletion

effectively deletes the slot.

Constraints: frameremove(+,+).

get ansver /2

The get_ansver predicate is given as its first argument, the maximum

number which can be returned as a valid response to an askable. If the

user tries to respond with an invalid answer, the getanswer predicate

will flag the 'invalid input' and prompt the user for a valid answer.

This predicate returns either the number which corresponds to the answer

selected by the user or the atom 'why' which corresponds to the user

wanting an explanation to the reason for the question.

Constraints: get answer(+,-). The first argument must be an

integer between 1 and 9.

get last goal /3

The get_last_goal predicate simply breaks the goals list into the

last goal and all the remaining goals.

Constraints: get_last_goal(+,-,-).

D-10

0

get list /4

The get_list predicate assumes that Obj-Attr-Val triple is in the

trace somewhere with a certainty factor less than 100. The getlist

predicate will return a list of all values along with their associated

certainties for every different value found in the trace which matches

the Obj-Attr pair.

Constraints: getlist(+,+,+,-). The first three arguments must be

atoms.

get reply /1

The get_reply predicate gets the next character placed into the

current input device and determines whether its a carriage return, a 'y',

a 'n', or a 'w', or anything else. If the character was either a

carriage return or a 'y', the getreply will return the atom 'yes'. If

the character was a 'n', it will return the atom 'no'. If the character

was a 'w', it will return the atom 'why'. If the character was anything

else, it will prompt the user to reenter the character.

Constraints: getreply(-).

get rest quote /4

The getrestquote predicate gets as its first argument a list of

ASCII numbers representing the remaining portion of an AOV triple which

it is trying to tokenize. The leading quote has already been seen and

now get-rest-quote will get the remaining portion of the quote, convert

it from an ASCII list to an atom, and return it as its third argument.

D-11

Cinstraints: get_rest_word(+,+,-,-). The first argument must be a

• list of ASCII numbers. The second argument must be a list.

get rest word /4

* The getrest_word predicate is fundamentally the same as the

get_rest_quote predicate. The get restword predicate will be given an

ASCII list L1, and a second list, L2, which may have ASCII numbers also,

• and will append all the ASCII numbers up to the first '32', representing

a space, of Li to L2, convert the list over to test and output it as Word

and output the remainder of the ASCIi numbers as REM.

• Constraints: get_rest word(+,+,-,-). Same as get_restquote.

get rule /4

* The getrule predicate will retrieve a demon procedure (rule) from

the frame structure either from the 'Frame' and 'Slot' specified or from

a parent/grandparent of the 'Frame' specified.

* Constraints: get_rule(+,+,+,-).

identifier /1

The identifier predicate identifies valid characters which may be

inside ABC's OAV triples.

Constraints: identifier(+). The argument must be an atom.

D-12

is known /4

* The is-known predicate is the primary predicate which controls the

inference characteristics of ABC. The isknown predicate is normally

called upon by a rule to try to infer more implicit knowledge from

• explicit facts and rules. It also returns the certainty factor which the

triple is known.

Constraints: is_known(+,+,?,-). The structure of the first

* argument must be in the form of a ABC triple of an ABC rule condition.

known /2

* The known predicate is activated when a top-level rule or frame

matches a goal. It attempts to satisfy this top-level rule or frame by

matching it against other facts, assertions, rules, frames or askables in

* the knowledge base. If the top level rule or frame is 'known', then the

goal is said to have a solution. The 'known' predicate uses the

'is known' predicate to solve the lower levels of the search for a

* solution. If a triple is 'known', the known predicate will succeed and

will return a calculated certainty factor giving the relative strength of

how well the OAV triple is 'known'.

* Constraints: known(+,-). The first argument must be an AOV triple.

letter /1

* The letter predicate tests to see if an ASCII number symbolizes some

letter of the alphabet. If it does, the 'letter' predicate succeeds. If

not, the predicate fails.

D-13

0

Constraints: letter(+). The argument must be an ASCII number

between 1 and 255.

load /1

The load predicate asserts a term into the Prolog database and calls

the ABC predicate "loadfile" until there is no more terms to load, at

which time, the "end of file" marker should be reached and the load

predicate will simply succeed not allowing backtracking.

Constraints: load(+). The ABC predicate "loadfile" must exist and

its constraints met.

loadfile /0

The loadfile predicate reads a term from a file and loads it into

the Prolog database with the use of the load predicate. The load

predicate actually asserts the term into the Prolog database and

recursively calls loadfile until the end of file is seen and then

terminates the loading process. This predicate is the same as in BC3.

Constraints: The calling procedure must "see" a valid Prolog file.

load abc /1

The load abc predicate checks to see if the filename provided is an

atom and then reconsults the file.

Constraints: load abc(+). A valid filename must be provided as the

input.

D-14

load aux /1

The load aux predicate is used to load user-defined Prolog predicates0

into the Prolog database. This includes demons, if they exist.

Constraints: loadaux(+). The constraints for the loadaux predicate

are the same as the "load wm" predicate. An additional constraint

imposed in this predicate is that all OAV triples must be in the form of

a Prolog list.

load kb /I

The loadkb predicate reads an unparsed knowledge base a term at a

time, parsing the term, converting quoted triples to triples within a

list, and writing the converted triple to a new file. This new file will

have the same prefix but it will have the extension of ".abc". Finally,

this predicate will read all of the new terms located in the new file and

assert them into the Prolog database.

Constraints: loadkb(+).

The entire file name must be passed to load kb, including the path.

Since this path/file name must be an atom, the path/file name must be

surrounded by single quotes for proper operation. Additionally, if the

filename does not exist, the system will normally produce an error

message which may be impossible to recover from without rebooting the

system and loosing your data.

D-15

0

load va /I

The loadvwm predicate takes the ".abc" or ".kb" knowledge base

filename, creates a filename with the same prefix yet with an extension

of ".wm". It then searches the current drive for the file with that

name. The file is then read in much like the ".kb" file, parsed and

converted, written back to a file called "ABC.TMP". Finally, the

"ABC.TMP" file is opened and read using the Prolog reader and the terms

are asserted into the Prolog database. The temporary file was necessary

to get Prolog to accept variables as variables instead of quoted atoms.

Constraints: Basically, the same as the "loadkb" predicate. The system

will normally produce a system error if the working memory file does not

exist.

makefile /0

The makefile predicate will read in a teim from a file, parse the

term and convert it so that all quoted OAV triples are converted to OAV

* triples within a Prolog list and then write them back out to a second

file. The term is read using the Prolog read predicate and the

outputting to the new file is done via ABC's change predicate. The

calling procedure is responsible for "seeing" and "telling" the

appropriate file.

Constraints: The calling procedure must "see /1" a valid Prolog

formatted file to read from it and must also "tell /1" a file to open an

output file. Note that if this file already exists, the "tell" predicate

will overwrite existing data in favor of the new data.

D-16

0 -- - I I .m"mnn m H H n

not in trace /2

The not intrace predicate checks both the main trace and the

temporary rule traces to see if a fact or rule has already been asserted

with the same object and attribute pair. If there are no assertions

* found, the predicate will return successful, otherwise, it will fail.

Constraints: not in trace(+,+). Both arguments must be atoms.

* parse name /3

The parsename predicate takes an atom (which is usually a file-

name) and divides it into two parts. The filename is parted into two

ASCII lists, one representing the filename's prefix and the other

representing the filename's extension.

print goals /1

The print_goals predicate displays the goal's list. It is used

within ABC to display the goals during a trace. This predicate may be

used to display any number of OAV triples which are in list form

separated by the ABC defined operator 'and'.

Constraints: printgoals(+).

print trace /0

The print-trace predicate actually lists the trace on the screen.

It extracts from the top of the Prolog database stack and pretty prints

each trace assertion one at a time. Pressing the space bar enables the

next trace to be displayed. This loop continues until no more triples

are left or until the user presses the ENTER key.

D-17

Constraints: None.

readline /2

The readline predicate allows the user to respond to a prompt

without the requirement that the user's response be a proper Prolog term.

It will allow letters and numbers and a few symbols to be entered in via

the keyboard. It will also allow the deletion of the last character

using the backspace-rubout key. It will return whatever is typed in as

an atom once the return key is pressed.

Constraint: readline(+,-).

read facet /1

The read-facet predicate safeguards the user from entering in a

facettype which is not recognizable by ABC.

Constraints: read-facet(-).

replace trace

The replacetrace predicate replaces a clause in the trace mechanism

with an updated clause. Actually all that gets updated is the certainty

factor. Whenever a second rule or fact derives a solution which has

already been found and placed into the trace, its certainty factor will

be used to increase the CF of the original assertion.

Constraints: replace-trace(+). The argument must be a valid ABC

knowledge structure.

D-18

restore kb /0

The restore_kb predicate retracts all the temporary knowledge of

previous consultations which were inserted into the Prolog database.

Constraints: None.

reverse goals /2

The reverse_goals predicate simply reverses the goals list so that

the goals may be asserted into the trace mechanism in their proper order.

Because of the operator precedence problems, the reversed goals must be

created by the last goal found in the original goal list and the reverse

of the remainder of the original goals.

Constraints: reverse goals(+,-).

rules /0

The rules predicate displays the syntactical rules which must be

obeyed throughout any consultation with ABC in order for it to perform

correctly. The ABC command "rules" calls this predicate so the user may

view the syntax rules at any ABC prompt.

Constraints: None.

save vu /0

The save wm predicate saves the working memory portion of the

knowledge base to a separate file. The filename is provided by the user.

The file can easily be read and altered by an ASCII editor. The save wm

predicate will save all the frames along with all the confirmed and

denied triples in the working memory of the Prolog database.

D-19

Constraints: None.

search trace /2

The search trace predicate searches both the main trace and the rule

trace to determine if a triple is present in either of the traces. If it

is, the predicate will succeed with some CF.

Constraints: searchtrace(+,-).

sget

The sget predicate is a recursive predicate which obtains the values

of the given frame/slot/slot-face combination.

Constraints: sget(+,+,+,-).

solve /1

The solve predicate is used to solve 'goals' in the form of "goals

goal_l and goal_2 and ... goaln." where each goal is an OAV triple. The

solve predicate also initiates the 'why' trace and displays all solved

triples which are not explicitly told by the user.

Constraints: solve(+). Goals must take the form outlined in the

ABC user's manual.

start /0

The start predicate "initiates" the database and keeps subsequent

operations in an infinite loop via the repeat/O and execute/i predicates.

This loop prompts the user for an ABC command. Each of these commands

will ultimately fail (except "quit") causing backtracking to the repeat

D-20

0

predicate where the cycle repeats with another prompt. There are a dozen

ABC commands which, relative to the start predicate, work on the

principle of "side-effects." The start predicate is called by the Prolog

interpreter upon consulting the ABC shell. You may exit the ABC shell by

typing "quit" at the ABC prompt.

Constraints: None.

tokenize /3

The tokenize predicate receives as an argument, a list of ASCII

numbers representing the O-A-V triple which was in quotes. This list is

then tokenized into a list of words. Tokenize does this through the aid

of the getrestword predicate. Tokenize gets all the words from within

the quoted atom 'A' which are separated by a space, appends them to the

list called 'List', and forms the new list called 'Newlist'. The

tokenize predicate is an alteration of a predicate by the same name taken

from Claudia Marcus' book "Prolog Programming", pages 203-210.

Constraints: tokenize(+,+,-). The first argument must be a list of

ASCII numbers. The second argument must be a list.

vrite conditions /1

The vrite conditions predicate displays (pretty prints) the

conditions of a rule during a trace. It will print out any condition

which ABC is capable of understanding.

Constraints: write conditions(+).

D-21

0

vrite confIrmed triples /0

* The write confirmedtriples predicate is used by the 'savewva'

predicate to save all the confirmed triples to working memory.

Constraints: None.

vrite denied triples /0

The writedeniedtriples predicate is used by the 'savewm'

* predicate to save all the denied triples to working memory.

Constraints: None.

* vrite frames /0

The write-frames predicate retrieves all of the frames in the

Prolog's database and writes them to the current output device.

* Constraints: None.

write goal /4

The write_goal predicate displays all of the solutions on the screen

in a 'pretty' print.

Constraints: writegoal(+,+,+,+).

write slots /1

The writeslots predicate takes all the slots of a given frame and

* 'pretty prints' them to the current output device.

Constraints: write slots(+). The argument must be in the form

'[Slot, SAttr, SVal, ...] slot [...].'

D-22

0-I

vrite valid ansvers 4

The writevalidanswers predicate is responsible for numerating and

displayina all the valid answers in a 'pretty' format. It also acquires

the number of the valid answers and then passes this information on so a

check can be made to make sure the user does not try to select a number

that does not correspond to a valid choice.

Constraints: write valid answer(+,+,-,-). The first argument must

be an atom. The second argument must be a list. The third argument must

be an integer.

D-23

Appendix 9: ABC Predicate Dependencies

This appendix shows all of the predicates which ABC uses and the

dependencies they have on other ABC predicates. This appendix was useful

throughout the development of ABC and was especially useful in a couple

of the marathon debugging sessions.

The predicates are listed as they appear in the draft copy of the

source code. Each predicate is followed by all the ABC predicates which

are used to define it. The forward slash with the number after it

indicates the "arity" of the predicate, or the number of arguments the

predicate has.

start /0
display intro screen /0
restore kb /0
readline /2
execute /1

display intro screen /0
rules /0-

rules /0

execute /1
cls /0
readline /2

check /2
load abc /1

* load-kb /1
get answer /1
load wm /1
load-aux /1
ask initial askables /0
solve /1
reversegoals /1
assert goals /1
get_reply /1
save um /0
execute /1
restore kb vc /0

E-1

-"I II0

print_trace /0
remove kb /0

* print_goals /1
vrite conditions /1
write-frame /1
convert triple /2
condition /2
getgoals /1
read-facet /1
remove_goal /3
commands /0

load kb /1
check /2
convert filename /3
makefile /0
loadfile /0

load abc /1
loadfile /0

load wm /1
convert filename /3
makefile /0
retract all /1
loadfile /0

load aux /1
convert filename /3
loadfile /0

convert filename /3

* parsename /3

parsename /3

makefile /0
change /1

change /1
convert term /2
makefile /0

loadfile /0
load /1

load /1
loadfile /0

load abc /1

E-2

0

check /2
check ext /2

* check ext /2
kb errormsg /0
check ext /2

kb error_msg /0

* convert term /2
convert term /2
convert-triple /2

convert triple /2
tokenize /3

tokenize /3
identifier /1
get rest word /4
tokenize-/3
getrestquote /4

get0rest quote A
getrestquote 4

get-rest word 4
identifier /1

* get rest word /4

identifier /1
letter /1
digit /1

* letter /1

digit /1

ask initial askables /0
ask_question /5

* assertin trace /1

askquestion /5
not in trace /2
write valid answers /4
get_answer 72

write valid answers /4

getanswer /2

E

E- 3

solve /1
retract all /I
known li
get-list 4
writegoal /4
solve /1

known /2
retract all /1

* is known /4
assert in trace /1

assert in trace /2
trace /1
calculateCF /3

* replace-trace /2
assert in trace /2

calculateCF /3

getlist /4
* retract-all /1

templist /1
member /3

write_goal /4

* reversegoals /2
getlastgoal /3
reverse_goals /2

getlast_goal /3
get_1z t_goal /3

assertgoals /1
assert-trace /1
assertgoals /1

save wm /0
S-cls /0

readline /2
write frames /0
write confirmed triples /0
write deniedtriples /0

* write frames /0
write-slots /1

write-slots /1
writelist /1
write slots '1

E

E-4

write confirmedtriples /0

writedeniedtriples /0

restore kb wc /0
get_reply /I
restore kb /0

restore kb /0
retract all /1

printtrace /0
writelist /1
write conditions /1

remove kb /0
restore kb /0
retract-all /1

write frame /1
write-frame /1

0w

condition /2

getgoals /1

read facp* /1
-read!ine /2
read-facet /1

remove_goal /3
removegoal /3

commands /0
cls /0

is-known /4
is known /4
retracttemprules /1
assert-rule trace /3
frameget /3
retract all /1
not in trace /2
ask about /3
assert-trace /1

retract_temp_rules /1
retracttemprules /1

search trace /2

not in trace /2

E-5

explain vhy /1
justify /2
getreply /1
explain vhy /1

justify /2
writelist /1

frameget /3
O fget 4

frameget /3

frameput /3
get rule /4

0 fput /4

frame remove /2
fdelete /4

fget /4
sget /4

* member /2

fput /4
add-value /5

add-value /5
add-value /5

fdelete 4
delete-value /5

delete value /5
* remove /3

delete-value /5

getrule /4
fget /4
get-rule /4

printgoals /1
printgoals /1

write conditions /1
writelist /1

* write conditions /1

convert to list /2
tokenize /3

E-6

0 IIPn

getreply /1

readline /2
* reverse /2

readline /2

reverse /2
append /3
reverse /2

remove /3
remove /3

writelist /1
writelist /

member /2
member /2

retract-all /1

* append /3
append /3

cls /0

E-7

S

/* *

/* PETS.KB */
* /* 05 Aug 88 / 26 Sep 88 */

/* */

/* This knowledge base was developed to demonstrate the functional- */
/* ity of several aspects of the AFIT Backward Chalner (ABC) expert */
/* system shell. In addition, it may be used as an example of how *!
/* to write frames and rules for use with the ABC shell. There are */
/* two parts of most knowledge bases: the rulebase and the working */
/* memory. The rulebase contains all the rules, facts, initial *
/* askables, and goals (if any). The rulebase is the static portion */
/* of the knowledge base. The working memory contains the confirmed */
/* and denied triples along with the frames. The working memory is */
/* the dynamic part of the knowledge base and thus may grow through */
/* its use in consultations simulating "learning". This learning is */
/* can be accomplished without the end user even being aware of it. */

/* */

/* The rulebase file has the extension of ".kb" or ".abc" depending */
/* on whether its been parsed or not. The working memory is kept in */
/* a seperate file with the same prefix yet with the extension of */
/* ".vm". When saving a rulebase, you will normally want to save it */
/* using this convention; otherwise, ABC will not see your working */
/* memory file and you may receive an error warning. */
/* */

/*--*

/* -------------------------- Facts and Rules ------------------------- *

fact : 'joe loves tweetie'.
fact : 'amy loves rover'.
fact : 'joe isa male'.
fact : 'amy isa female'.

initial askable : 'joe likes amy ' derived-from
"Does Joe like Amy? " and 'yes no'.

rule_1 : if 'Animal age Age' and
'Age >= 4' and

* 'Animal owner Owner' and
'Owner loves Animal'

then 'Owner getcheckup Animal'.

rule 2 : if 'Animal 1 owner Owner_1' and
'Owner 1 isa male' and

• 'Animal 2 owner Owner_2' and
'Owner 2 isa female' and
'Owner 1 likes Owner 2'

then 'Animal_1 will-see Animal 2'.

goals : 'joe getcheckup tweetie' and
* 'tweetie will-see rover' and

F-1

'rover coat Coat'.

/* You must initially load this knowledge base using the ABC command */
/* "load." This will generate a new file on your disk called */
/* PETS.ABC which is the file actually loaded in working memory. */
/* A second file, ABC.TMP, will also be made but may be deleted later.*/

/* Run a consultation of this knowledge base with the above goals. */
/* Afterwards, perform a trace and see what the trace mechanism in */
/* ABC provides. Additionally, once you exit ABC, look at the file */
/* PETS.ABC and see what your Prolog interpreter is actually reading */
/* into working memory. */

F-2

/* */

1" PETS.WH *I
I* *1

/* This is the working memory part of the knowledge base called */
/* pets. It should be entered using a text processor under a file */
/* called "pets.vm". */

/* ------------------- A Frame named Tveetie ------------------------- *

frame : tweetie
slot 'ako value canary' /* tweetie is a kind of canary. */
slot 'owner value joe' /* joe is tweetle's owner. */
slot 'born if needed ask dob' /* Execute demon ask dob if you */

/* need tweetie's year of birth. */
slot 'age if_needed findage'. /* Execute demon find age if you *I

/* need tweetie's age. Notice */

/* also the period at the end */
/* signifying the end of frame. */

/* --------------------- A Frame named Rover -------------------------- *

frame : rovei
slot 'ako value dog' /* Notice that what's inside the */
slot 'owner value amy' /* single quotes is the slot- */
slot 'born value 1979' /* name followed by a space and */
slot 'born if needed ask dob' /* then the slot-facet followed */
slot 'age if_needed find-age'. /* by another space and finally */

/* the slot-value.

-* ---------------------- A Frame named Canary ------------------------- *

frame : canary
slot 'ako value bird' /* Hierarchy is accomplished via */
slot 'eats default seed' /* the slot called ako which */
slot 'color default yellow'. /* always has a facet-value of */

S/* value or default.

/* ---------------------- A Frame named Dog -------------------------- *

frame : dog /* The facet-values are limited */
slot 'ako value mammal' /* to: value, default, if needed,*/
slot 'color default brown'. /* if added, and ifremoved. */

F-3

/* ----------------------- A Frame named Mammal --------------------- *

frame : mammal /* The facet-values that start */
slot 'ako value animal' /* with "if" have rules associ- */
slot 'coat default hair'. /* ated with them which are exe- */

/* cuted when the slot is called.*/

/* ------------------------ A Frame named Animal ----------------------*

frame : animal
slot 'numlegs default 4'
slot 'numeyes value 2'.

/* --------------------- Demons for the above frames ---------------- *
/* *

/* Demons must be written in Prolog. You may make use of any pred- */
/* icates already built-in and defined by Clocksin and Hellish or */
/* any predicates already defined by the ABC shell. The frame base */
/* language used by ABC has several very important conventions when */
/* writing demons. Please consult the ABC user's manual for details. */

/* */

/* Demons along with all other self-defined Prolog predicates must */
/* be defined in an auxilary file. Using ABC convention, the name *I
/* of this auxilary file will have the same prefix as your ".kb" */
/* file, yet with the extension ".aux". This convention will make */
/* it easier to remember. One trick to keep from remembering the */
/* auxilary filename is to "reconsult" it from within your working */
/* memory or rulebase files. */

F-4

0 /* ,/

/* PETS.AUX */
/* */

/* This is the auxilary file which contains any Prolog code which */
/* includes any demons written for the PETS knowledge base. The two */
/* demons, "find_age" and "askdob" are both defined in this file. *11 * *I

/* -- *

find age(Animal,[Age]) :- /* Get the animal's birthyear *I
frameget(Animal,born,[Birthyr]), /* from the frame structure, get */

• nl,nl,
write('What year is this? (yyyy): '), /* the current year, and */
readyear(Year), /* subtract and find age. */
Age is Year - Birthyr.

/* Notice that the frame base language predicate called "frame-get/3" */
/* was used in the above demon. The ABC predicate "is known/4" */
/* could have been used more generally, searching the trace, facts, */
/* rules, etc before searching the frames. But the assumption was */
/* made that associated knowledge will be grouped together, one of */
/* the fundamental purposes of frames, so "frame_get/3" was the more */
/* efficient and practical choice. */

ask dob(Animal,[Birthyearj) :- /* After the birthyear is found, */
nl,nl, /* the frame base language pred- */
write('What year was '), /* icate "frameput/3" is used */
wrlte(Animal), /* to assert this knowledge into */
write(' born? (yyyy): '), /* the frame structure so that */
read year(Birthyear), /* the user will not be bothered */
frame_put(Animal,born,Birthyear). /* with this query again. Also, */

/* this knowledge can be saved */
/* with the rest of working */
/* memory. */

read year(Year) :-

readline([],Reply),
nl,
(integer(Reply),
Year = Reply,
Year > 1950, !

write('Please re-enter year, e.g., 1980: '),
read year(Year)

F-5

0

/* */

/* WINE.ARI */
* /* 25 Aug 88/29 Aug 88 */

/* */

/* This is a knowledge base which is designed to run on the ABC ex- */
/* pert system shell. It was made specifically to show the */
/* functionality and usefulness of the ABC shell. The vine know- */
/* ledge base is simular to Teknovledge's WINE knowledge system. */
I * *I
/*---*

initial askable : 'main-component is MainComponent' derived-from
"What is the main component of the meal?" and 'meat fish poultry'.

* initial askable : 'meal has sauce' derived from
"Does the meal have a sauce on it?" and 7yes no'.

askable : 'sauce is Sauce_Type' derived from
"What kind of sauce is it?" and 'spicy sweet cream tomato'.

* initial askable : 'tastiness is Tastiness' derived from
"What is the flavor of the meal?" and 'delicate average strong'.

askable : 'bestbody is Preferred Body' derived from
"What type of body do you prefer your wine to have?" and
'light medium full'.

askable : 'best color is Preferred Color' derived-from
"What color of wine do you prefer?" and 'red white'.

askable : 'best sweetness is Preferred Sweetness' derived-from
"What level of sweetness do you prefer in a wine?" and

* 'dry medium sweet'.

rule_1 : if 'meal has sauce' and
'sauce is spicy'

then 'best_body is full'.

* rule_2 : if 'tastiness is delicate'
then 'best_body is light cf 80'.

rule_3 : if 'tastiness is average'
then 'best_body is light cf 30'.

* rule4 : if 'tastiness is average'
then 'best_body is medium cf 60'.

rule_5 : if 'tastiness is average'

then 'best_body is full cf 30'.

* rule_6 : if 'tastiness is strong'

G-1

--0m

then 'bestbody is medium cf 40'.

rule_7 : if 'tastiness is strong'
then 'bestbody is full ef 80'.

rule_8 : if 'meal has sauce' and
'sauce is cream'

then 'bestbody is medium cf 40'.

rule 9 : if 'meal has sauce' and
'sauce is cream'

then 'bestbody is full cf 60'.

rule_10 : if not 'main component is poultry'
- then 'meal includes turkey cf 0'.

askable : 'meal includes turkey' derived from
"Does the meal have turkey in it?" and 'yes no'.

rule_11 : if not 'main component is meat'
then 'meal includes veal cf 0'.

askable : 'meal includes veal' derived from
"Does the meal have veal in it?" and 'yes no'.

rule_12 : if 'meal has sauce' and
'sauce is spicy'

then 'feature is spiciness'.

rule_13 : if 'maincomponent is meat' and
not 'meal includes veal'

then 'best color is red cf 90'.

rule_14 : if 'maincomponent is poultry' and
not 'meal includes turkey'

then 'best-color is white cf 90'.

rule_15 : if 'maincomponent is poultry' and
not 'meal includes turkey'

then 'best-color is red cf 30'.

rule_16 : if 'maincomponent is fish'
then 'best-color is white'.

rule_17 : if not 'maincomponent is fish' and
'sauce is tomato'

then 'best-color is red'.

rule_18 : if 'maincomponent is poultry' and
'meal includes turkey'

then 'bestcolor is red cf 80'.

G-2

rule_19 : if 'main component is poultry' and
'meal includes turkey'

then 'best-color is white cf 50'.

rule_20 : if 'meal has sauce' and
'sauce is cream'

then 'best color is white cf 40'.

rule 21 : if 'meal has sauce' and
'sauce is sweet'

then 'best-sweetness is sweet cf 90'.

rule_22 : if 'meal has sauce' and
'sauce is sweet'

then 'best-sweetness is medium cf 40'.

rule_23 : if 'best-body is BestBody' and
'best color is Best Color' and
'best sweetness is Best Sweet', and

* 'Wine body BestBody' and
'Wine color Best Color' and
'Wine sweetness BestSweet'

then 'recommended wine is Wine'.

G-3

0

/* */

/* Working Memory for Wine.kb */
26 Aug 88 */

/* */

/* This data is listed in Teknowledge's M.1 Sample Knowledge Systems */
/* manual on page 3-22 and 3-23 in the form of M.1 rules. The data */
/* has been represented here in frames to further demonstrate how to */
/* build frames to run with the ABC shell. */
/* ,/
/*--*

frame : gamay
slot 'color value red'
slot 'body value medium'
slot 'sweetness value medium sweet'.

frame : chablis
slot 'color value white'
slot 'body value light'
slot 'sweetness value dry'.

frame : sauvignon blanc
slot 'color value white'
slot 'body value medium'
slot 'sweetness value dry'.

frame : chardonnay
slot 'color value white'
slot 'body value medium full'
slot 'sweetness value dry medium'.

frame : soave
slot 'color value white'
slot 'body value light'
slot 'sweetness value dry medium'.

frame : riesling
slot 'color value white'
slot 'body value light medium'
slot 'sweetness value medium bweet'.

frame : chenin blanc
slot 'color value white'
slot 'body value light'
slot 'sweetness value medium sweet'.

frame : valpolicella
slot 'color value red'
slot 'body value light'
slot 'sweetness value dry medium sweet'.

G-4

0

frame : cabernet_sauvignon
slot 'color value red'

* slot 'body value light medium full'
slot 'sweetness value dry medium'.

frame : zinfandel
slot 'color value red'
slot 'body value light medium full'

* slot 'sweetness value dry medium'.

frame : pinot noir
slot 'color-value red'
slot 'body value medium'
slot 'sweetness value medium'.

frame : burgundy
slot 'color value red'
slot 'body value full'
slot 'sweetness value dry medium sweet'.

G-5

Summ m n m m m , n

APPENDIX H

Expert System Examples Using K.A

This appendix contains two examples of expert systems developed by

Teknowledge to demonstrate their M.1 expert system shell. Both of the

expert systems are wine advisors but they are both presented to show the

difference between how the knowledge looks. The first expert system

called VINE uses the default operators while the second expert system

CWINE uses the optional, user generated, operators to help make the

knowledge base more readible.

<8.l> V I N E
Version 1.1
Copyright (c) Teknowledge Inc, 1984

August 16, 1984

This knowledge base contains the same knowledge as WINE,
but uses logical variables (denoted by capital letters)
so that syntactically identical rules from the WINE knowledge
base can be collapsed into a single rule in VINE.

In addition, VINE uses logical variables in conjunction with
a small database of wines, and a single 'table lookup' rule
to find the wines, rather than a separate rule for each wine.

The top-level goal of the consultation is 'wine'.

goal = wine.

/* Before the system attempts any inferences,
the user's preferences are obtained: */

initialdata = [preferred-color, preferred-body, preferred-sweetness).

H-1

/* --------------------------- BEST-BODY ----------------------------

/* The following rules use information about the sauce on the meal
and the meal's tastiness to find the best body for the wine. */

rule-i: if has-sauce and
sauce = spicy
then best-body = full.

rule-2: if tastiness = delicate
then best-body = light cf 80.

rule-3: if tastiness = average
then best-body = light cf 30 and
best-body = medium cf 60 and
best-body = full cf 30.

rule-4: if tastiness = strong
then best-body = medium cf 40 and
best-body = full cf 80.

rule-5: if has-sauce and
sauce = cream
then best-body = medium cf 40 and
best-body = full cf 60.

/* --------------------------------- BEST-COLOR -------------------- *

/* The following rules use information about the main component
of the meal and the sauce on the meal to determine the best
color of wine to accompany the meal. */

rule-6: if main-component = meat and
has-veal = no
then best-color = red cf 90.

rule-7: if main-component = poultry and
has-turkey = no
then best-color = white cf 90 and
best-color = red cf 30.

rule-8: if main-component = fish
then best-color = white.

rule-9: if not(main-component = fish) and
has-sauce and
sauce = tomato
then best-color = red.

H-2

rule-lO: if main-component . poultry and
has-turkey
then best-color = red cf 80 and
best-color = white cf 50.

rule-11: if main-component is unknown and
has-sauce and
sauce = cream
then best-color = white cf 40.

/* -------------------------- BEST-SWEETNESS -------------------------- *

/* The only rule that can help provide information about how sweet
the recommended wines should be 'fires' when the meal has a sweet
sauce on it. */

rule-12: if has-sauce and
sauce = sweet
then best-sweetness = sweet cf 90 and
best-sweetness = medium cf 40.

/* ----------------------- DEFAULT-X --------------------------------- *

/* These default expressions are used when M.1 is unable to find
values for either best-CHARACTERISTIC or preferred-CHARACTERISTIC.

The single 'noautomatlcquestion' entry keeps M.1 from ever asking

the user to provide a value for a default characteristic. */

noautomaticquestion(default-X).

* default-body = medium.

default-color = red cf 50.
default-color = white cf 50.

default-sweetness = medium.

H-3

------------- FEATURE --------------------

/* 'Feature' is a special characteristic of vine, currently used
* only to indicate that the meal is spicy. *

multivalued(feature).

rule-13: if has-sauce and
sauce = spicy

* then feature = spiciness.

/* ----------------------------- HAS-SAUCE ---------------------------*

question(has-sauce) ='Does the meal have a sauce on it?'.

legalvals(has-sauce) [yes, no].

/* ---------------------------- HAS-TURKEY ----------------------------*

* question(has-turkey) ='Does the meal have turkey in it?,.

legalvals(has-turkey) =[yes, no).

/* ---------------------------- HAS-VEAL ------------------------------*

question(has-veal) ='Does the meal have veal in it?'.

legalvals(has-veal) =[yes, no].

/* ---------------------------- MAIN-COMPONENT ------------------------ *

multivalued(main-component).

quest ion(main-component) =
'Is the main component of the meal meat, fish or poultry?'.

legalvals(main-component) = [meat, fish, poultry).

1* --------------------------- PREFERRED-BODY -------------------------*

* multivalued(preferred-body).

question(preferred-body) =
'Do you generally prefer light, medium or full bodied vines?'.

legalvals(preferred-body) = [light, medium, full).

H-4

/* -------------------------- PREFERRED-COLOR ------------------------- *

* multivalued(preferred-color).

question(preferred-color) =
'Do you generally prefer red or white wines?'.

legalvals(preferred-color) = [red, white].

/* -------------------------- PREFERRED-SWEETNESS --------------------- *

multivalued(preferred-sweetness).

* question(preferred-sweetness) f 'Do you generally prefer dry, medium or
sweet wines?'.

legalvals(preferred-sveetness) = [dry, medium, sweet].

/* -------------------------- RECOMENDED-X ------------------------- *

/* These rules contain logical variables (in capital letters)
that make these rules applicable when seeking best-color,
best-body, and best-sweetness.

• If best-CHARACTERISTIC is known, then that is what's recommended.
If the users preference about a particular characteristic is known,
then that's used as the recommended characteristic. If neither
the best nor the preferred characteristic is known, then a default
value is used. */

* v-rule-i: if best-X = V
then recommended-X = V.

v-rule-2: if best-X is unknown and
preferred-X = V

then recommended-X = V.

v-rule-3: if best-X is unknown and
preferred-X is unknown and
default-X = V
then recommended-X = V.

H-5

0,|

0

/* -------------------------- SAUCE ---------------------------------- *

* multivalued(sauce).

question(sauce) =
'Is the sauce for the meal spicy, sweet, cream or tomato?'.

legalvals(sauce) (spicy, sweet, cream, tomato].

/* ------------------------- TASTINESS ------------------------------- *

multivalued(tastiness).

question(tastlness)
'Is the flavor of the meal delicate, average or strong?'.

legalvals(tastiness) = (delicate, average, strong].

** *----------------------------- WINE ------------------------------*

multivalued(wine).

multlvalued(wine(COLOR,BODY,SWEETNESS)).

/* The following rule, with the table entries that follow, replaces the
* bulk of the rules from the wine KB that conclude wine: *

v-rule-4: if recommended-color = C and
recommended-body = B and
recommended-sweetness = S and
wine(C,B,S) = V
then wine - W.

/* This 'noautomaticquestions' statement ensures that no automatic
question will be generated for wines not included in this table. *

noautomaticquestion(vine(COLOR,BODY,SWEETNESS)).

H-

40

/* These table entries represent the mapping of attribute triples to
specific vines. Note the use of the variable ANY in some entries to
indicate that a particular attribute doesn't play a role in the
selection of that vine: */

vine(red,medium,medium) =gamay.

vine(red,medium,sveet) =gamay.

vine(vhite,light,dry) chablis.
vine(vhite,medium,dry) = sauvignon blanc'. vine(vhite,medium,dry)

S chardonnay.
wine(vhite,medium,medium) = chardonnay.
vine(vhite,full,dry) = chardonnay.
vine(white, full,medium) = chardonnay.
vine(vhite,light,dry) -soave.
vine(vhite,light,medium) = soave.
wine(vhite,light,medium) = riesling.
vine(vhite,light,sveet) = riesling.
vine(white,medium,medium) = riesling.
vine(vhite,medium,sveet) = riesling.
wine(vhite,light,medium) = 'chenin blanc'.
vine(vhite,light,sveet) = 'chenin blanc'.

6 wine(red,light,ANY) = valpolicella.
vine(red,ANY,dry) = 'cabernet sauvignon'.
wine(red,ANY,dry) = zinfandel.
vine(red,ANY,medium) = 'cabernet sauvignon'.
vine(red,ANY,medium) = zinfandel.
wine(red,medium,medium) = 'pinot noir'.

6 wine(red,full,ANY) = burgundy.

/* The folloving rule mentions feature, and hence is inconvenient to
replace by a table-entry. */

rule-14: if recommended-color = vhite and
* recommended-body = full and

feature = spiciness
then vine = gevuerztraminer.

H-7

0

CHINE

Version 1.1
This knowledge base is in preliminary form,

it should not be considered 'expert'.

Copyright (c) Teknowledge Inc, 1984

August 17, 1984

/* This knowledge base contains the same knowledge as WINE, yet
uses a cyclic control structure that allows multiple recommendations
to be made.

After a set of wines is recommended, the system asks the user if
those wines are satisfactory. If they are, then the consultation is
over. If the user indicates that the wines are NOT satisfactory,
the system asks which characteristics of the wine (color, body, or
sweetness) the user would like to change. After asking for the value
of the new characteristic(s), the system makes new recommendations.
This process continues until the user indicates that the wines are
indeed satisfactory.

This knowledge base introduces three new M.1 concepts:

* user-modified syntax
* presuppositions
* mostlikely

User-modified syntax is a mechanism by which the knowledge
engineer can improve the readability of the knowledge base.
The KE can declare particular words as prefix, infix, or postfix
'operators'. These allow non-atomic expression names to be specified
without hyphens. For example, 'the-best-sweetness' can be written as

* 'the best sweetness' if 'the' and 'best' are declared as prefix
operators.

Presuppositions can be used by the knowledge engineer to specify that
a particular expression must be 'true' in order for it to make sense
to even seek another expression. For example, it wouldn't make sense

* for the system to ask what kind of sauce is on the meal unless there
actually IS a sauce on the meal. This relationship between 'has

sauce' and 'sauce' can be explicity represented by a presupposition
of the form

presupposition(sauce) = has sauce.

and does away with the need for various 'screening clauses' in rules
that test for sauce, which would otherwise be necessary.
The 'mostlikely' function can be used in the premises of rules to
find the value of a particular expression that is believed with the
highest certainty.
For example, 'mostlikely(wine) = X' will bind X to 'zinfandel'

H-8

0

if that is the value of 'wine' that has the highest cf. */

* /* The following words are used as operators in CWINE: */

prefix best.
prefix cycle.
prefix default.
prefix has.

* prefix main.
prefix new.
prefix preferred.
prefix recommended.
prefix selection.
prefix the.

• prefix user.

infix for.
infix with.
infix to.
infix of.

/* There is no 'goal' specification in the CWINE knowledge base.
The top level goal for the consultation ('the consultation
is over') is specified as an 'initialdata' expression so that
M.1 will not automatically display its value at the end
of the consultation. */

initialdata = [the consultation is over].

* ----------------------CYCLE N IS COMPLETE --------------------------

/* These rules are used to determine whether or not a particular
*• cycle of recommendations is complete.

A cycle is considered complete if either:

* the wines have been determined,
the wines have been displayed to the user, and

* the user is happy with those vines,
or

* no vines are found to be appropriate for the user */

rule-i: if the vine for cycle N is known and
user informed of selection N and

* user happy with selection N
then cycle N is complete.

H-9

0

rule-2: if the vine for cycle N is unknown and
display(['Sorry, I"m unable to recommend any appropriate vines.',

nlI)
then cycle N is complete.

/* If a particular cycle is complete, then the previous cycle is
also complete. */

rule-3: if nextcycle to M = N and
cycle N is complete
then cycle M is complete.

/* ------------------------ FEATURE ---------------------------------- *

/* 'Feature' is a special characteristic of the vine, that's
currently only used to indicate a particularly spicy meal.

This attribute can have more than one value with certainty
at a time. */

multivalued(feature).

rule-4: if sauce = spicy
then feature = spiciness.

/* ----------------------- HAS SAUCE ------------------------------ *

question(has sauce) =
'Does the meal have a sauce on it?'.

legalvals(has sauce) =
[yes, no).

/* ----------------------- HAS TURKEY ------------------------------ *

/* If the main component of the meal is not poultry, then it's
reasonable to assume that it doesn't contain turkey. */

rule-5: if not(the main component = poultry)
* then has turkey = no.

question(has turkey) =
'Does the meal have turkey in it?'.

legalvals(has turkey) =
[yes, no].

H-10

/* ------------------------ HAS VEAL ---------------------------------- *

/* Likewise, if the main component of the meal isn't meat,
then it's reasonable to assume that it doesn't contain veal. */

rule-6: if not(the main component = meat)
then has veal = no.

question(has veal) =
'Does the meal have veal in it?'.

legalvals(has veal) =
[yes, no].

/* --------------------- NEXTCYCLE TO M ------------------------------- *

/* This rule establishes the 'number' of the cycle that comes after
cycle H. This is used when CWINE finds it necessary to create another

cycle of recommendations. */

rule-7: if M + 1 = N
then nextcycle to M = N.

/* -------------------- PREVIOUSCYCLE TO H ---------------------------- *

1* This rule finds the number of the cycle that immediately preceeds

the current cycle, so thaL H.1 can carry over the characteristics
of wine from the previous recommendation cycle that the user didn't
find objectionable. */

rule-8: if M > 1 and
H - 1 = N
then previouscycle to H = N.

/* ----------------------- SAUCE -------------------------------------- *

presupposition(sauce) = has sauce.

* multivalued(sauce).

question(sauce) =
'Is the sauce for the meal spicy, sweet, cream or tomato?'.

legalvals(sauce) =
[spicy, sweet, cream, tomato].

H-11

0

/* ---------------------- TASTINESS ---------------------------- *

multivalued(tastiness).

question(tastiness) =
'Is the flavor of the meal delicate, average or strong?'.

legalvals(tastiness) =
[delicate, average, strong].

/* -------------------------- THE BEST BODY --------------------------

/* These rules are used to find the best body of the wines to recommend,
using the meal's tastiness and sauce (if it has one). */

rule-9: if sauce = spicy
then the best body = full.

rule-10: if tastiness = delicate
then the best body = light cf 80.

rule-11: if tastiness = average
then the best body = light cf 30 and

the best body = medium cf 60 and
the best body = full cf 30.

rule-12: if tastiness = strong
then the best body = medium cf 40 and
the best body = full cf 80.

rule-13: if sauce = cream
then the best body = medium cf 40 and
the best body = full cf 60.

/* ---------------------- THE BEST COLOR ------------------------------ *

These rules help find the best color of vine to recommE-4, based

on characteristics of the meal itself. */

* rule-14: if the main component = meat and
has veal = no
then the best color = red cf 90.

rule-15: if the main component = poultry and
has turkey = no
then the best color = white cf 90 and
the best color = red cf 30.

rule-16: if the main component = fish
then the best color = white.

H-12

rule-17: if not(the main component = fish) and
sauce = tomato
then the best color = red.

rule-18: if the main component = poultry and
has turkey
then the best color = red cf 80 and
the best color = white cf 50.

* rule-19: if the main component is unknown and
sauce = cream
then the best color = white cf 40.

/* ---------------------- THE BEST SWEETNESS ----------------------- *

* /* If the meal has a sweet sauce, then a sweet-to-medium-sweet wine
is probably appropriate. */

rule-20: if sauce = sweet
then the best sweetness = sweet cf 90 and
the best sweetness = medium cf 40.

/* ----------------- THE CONSULTATION IS OVER ------------------------ *

/* This is only rule that concludes about the top level goal
of the consultation. */

rule-21: if cycle 1 is complete and
display(['The consultation is over.', nl)
then the consultation is over.

/* ----------------- THE DEFAULT X ---------------------------------- *

/* These default characteristics come into play when CWINE is unable
to find either the best CHARACTERISTIC or the user's preferred
CHARACTERISTIC. The system should never ask the user about these
defaults, hence the 'noautomaticquestion' kb entry. */

noautomaticquestlon(the default X).

the default body = medium.

the default color = red cf 50.
* the default color = white cf 50.

the default sweetness = medium.

H-13

/* ------------------ THE FAULT WITH CYCLE N ------------------------- *

multivalued(the fault with cycle N).

question(the fault with cycle N) =
'Which characteristic of the wine would you like to change?'.

legalvals(the fault with cycle N) -

[color, body, sweetness].

/* ---------------------- THE MAIN COMPONENT ------------------------- *

multivalued(the main component).

question(the main component) =
'Is the main component of the meal meat, fish or poultry?'.

legalvals(the main component) f
[meat, fish, poultry].

/* ----------------- THE NEW VALUE FOR X FOR CYCLE N ----------------- *

The following question specification will work for color, body
and sweetness. Legalvals are still of course different, so those
specifications can't be collapsed. */

question(the new value for X for cycle N) ['What ', X ,' would you
prefer?'].

legalvals(the new value for color for cycle N) =

[red, white].

legalvals(the new value for body for cycle N) =

[light, medium, full).

legalvals(the new value for sweetness for cycle N) =

[dry, medium, sweeti.

I* ----------------------- THE PREFERRED BODY -----------------------

multivalued(the preferred body).

question(the preferred body) =
'Do you generally prefer light, medium or full bodied wines?'.

* legalvals(the preferred body) =

[light, medium, full].

H-14

0

/* ----------------------- THE PREFERRED COLOR ----------------------- *

multivalued(the preferred color).

question(the preferred color) =
'Do you generally prefer red or white wines?'.

legalvals(the preferred color) =
[red, white].0

/* -------------------- THE PREFERRED SWEETNESS ---------------------- *

multivalued(the preferred sweetness).

question(the preferred sweetness) =
'Do you generally prefer dry, medium or sweet wines?'.

legalvals(the preferred sweetness)
[dry, medium, sweet].

/* ----------------- THE RECOMMENDED X FOR CYCLE N ----------------- *

• /* These rules establish the recommended characteristics for the wines
that CWINE recommends during the first cycle (characteristics of
subsequent cycles are either carried over or explicitly stated by
the user).

If the best characteristic is known, then that's recommended.
* If the best characteristic is NOT known, then the user's preference

is recommended (provided the user states one). If neither the best
nor the preferred characteristic is known, CWINE resorts to the
default characteristics specified above. */

rule-22: if the best X = V
• then the recommended X for cycle 1 = V.

rule-23: if the best X is unknown and
the preferred X = V
then the recommended X for cycle 1 = V.

* rule-24: if the best X is unknown and
the preferred X is unknown and
the default X = Y
then the recommended X for cycle 1 = Y.

H-15

/* This rule carries over a characteristic from one cycle to the
next, provided that the user doesn't want to change it. */

* rule-25: if previouscycle to M = N and
not(the fault with cycle N = X) and
the recommended X for cycle N = V
then the recommended X for cycle M = V.

/* This rule comes into play when the user indicates that a particular
• characteristic is objectionable. The user is asked what the new

value for the characteristic should be, and that value is used in
the next cycle of recommendations. */

rule-26: if previouscycle to M = N and
the fault with cycle N = X and

* the new value for X for cycle M = V
then the recommended X for cycle M = V.

/* ------------------------- THE WINE FOR CYCLE N --------------------- *

multivalued(the wine for cycle N).

/* This rule uses recommends wines for a particular cycle by finding
the characteristics of the wines to recommend and doing a 'lookup'
operation in a small table of wines and recommends wines that match
the characteristics provided. */

• rule-27: if the recommended color for ',ycle N = C and
the recommended body for cycle N = B and
the recommended sweetness for cycle N = S and
wine(C,B,S) = W
then the vine for cycle N = W.

* /* The following rule mentions 'feature', and hence is inconvenient

to replace by a table entry. */

rule-28: if the recommended color for cycle N = white and
the recommended body for cycle N = full and

* feature = spiciness
then the wine for cycle N = gewuerztraminer.

/* -------------------- USER HAPPY WITH SELECTION N ------------------- *

* question(user hap.- 'ith selection N) = [nl,'Are you happy with these?'].

legalvals(user happy with selection N) = [yes,nol.

H-16

/* ------------------- USER INFORMED OF SELECTION N ------------------ *

/* This rule uses 'mostlikely' to find the values of the characteristics
of the vines that are believed with the most certainty. The values of
these characteristics are output to the screen by means of a
'display' clause in the rule's premise. Note the use of'do'
to actually issue the 'show' command (ordinarily used only at the
M.1 top level interpreter) from within the premise of the rule. */

i
rule-29: if mostlikely(the recommended color for cycle N) = C and

mostlikely(the recommended body for cycle N) = B and
mostlikely(the recommended sweetness for cycle N) = S and

display(['The following wines will mostly be ',

S, ', ', B, '-bodied, and ', C, '.', nl,
'They are recommended for your meal.', nl, nlJ) and

do(shov the wine for cycle N)
then user informed of selection N.

/* --------------------- WINE(X, Y, Z) ----------------------------- *

* /* The following facts comprise a small tables that describe vines
in terms of their characteristics. These facts are matched by
rule-27 in order to come up with particular recommendations.

The 'noautomaticquestion' specification prevents M.1 from
generating a question when the table doesn't contain a vine

• for a particular combination of characteristics. */

multivalued(wine(COLOR, BODY, SWEETNESS)).

noautomaticquestion(wine(COLOR, BODY, SWEETNESS)).

H-17

0

0ierdmdu~mdu)=gmy

vine(red,medium,meiu) = gamay.

vine(vhite,ligbt,dry) - chablis.
* vine(vhite,medium,dry) = 'sauvignon blanc'.

vine(vhite,medium,dry) = chardonnay.
vine(vhite,medium,medium) = chardonnay.
vine(vhite,full,dry) = chardonnay.
vine(vhite, full,medium) = chardonnay.
vine(vhite,light,dry) = soave.

*vine(vhite,light,medium) = sae
vine(vhite,light,medium) = riesling.
vine(vbite,light,sveet) = riesling.
vine(vhite,medium,mediun) = riesling.
vine(vhite,medium,sweet) = riesling.
vine(vhite,light,inedium) = 'chenin blanc'.

* vine(vhite,light,sweet) = 'chenin blanc'.
vine(red,light,ANY) = valpolicella.
vine(red,ANY,dry) = 'cabernet sauvignon'.
vine(red,ANY,dry) = zinfandel.
vine(red,ANY,medium) ='cabernet sauvignon'.
vine(red,ANY,niedium) = zinfandel.

* vine(red,mediui,medium) = 'pinot noir'.
vine(red,full,ANY) = burgundy.

/*---*

H-18

Appendix I

Clocksin and Hellish Prolog Predicates

Below is a list of the 58 standard predicates listed in the book

"Programming in Prolog" by William F Clocksin and C.S. Hellish. All

predicates used in ABC are either part of the list below or are ABC

defined predicates made from the predicates listed below.

t (the cut) integer
* (multiplication) is

+ (addition) listing
- (subtraction) mod

name
/ nl
< nonvar

nospy
=< not

notrace
op

> put
>= read
== reconsult

repeat
append retract

arg see
asserta seeing
assertz seen
atom skip
atomic spy
call tab
clause tell
consult telling
display told
fail trace
functor true
getO var
get write

I-1

Vita

Eddy Gene Clark He

moved to Alabama and later to Tennessee as a young boy. He graduated

from high school in Rutherford, Tennessee in 1973 and vent to york as a

cabinet builder. In the fall of 1974, he enlisted in the Air Force in

the Traffic Management Office career field. He remained in the Air

Force until the fall of 1980 when he left to enter College at the

University of Tennessee at Martin to study pre-engineering. After two

years at Martin, he went on to get his bachelor's degree in Electrical

Engineering at the University of Tennessee at Knoxville where he

graduated with honors. Upon graduation he attended Officer Training

School and received his commission. His first assignment was working as

a C-130/C-141 electrical engineer at the Air Logistic Center at Robins

Air Force Base in Georgia. "e was then accepted into the computer

engineering master's program at the Air Force Institute of Technology.

Vita-1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Appoved

REPORT DOCUMENTATION PAGE OMB No. 07001

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLAMIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for puiblic release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCW/3/88D-2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I (if applicable)

Scho of Engineering AFIT/EM
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) . '5-

Air Force Institute of Technology o

Wright Patterson AFB, OH 45433-6583 .. ,,

Ba. NAME OF FUNDING /SPONSORING 8ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMNT IDENIFICATION NUMBER
ORGANIZATION (If applicable)

9Ic. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

An Educational Expert System Shell Integrating Object-Attribute-Value Triples and Frames
12. PERSONAL AUTHOR(S)

Eddy G. Clark, B.S., Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) I15. PAGE COUNT
MSCE Thesis I FROM TO 1988 December

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

12 05 Artificial Intelligence, Expert Systems, Prolog

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Professor F.M. Brown

Investigates the creation of an expert system shell which integrates object-
attribute-value (OAV) triples with frames and implements the shell in standard Prolog.
Additionally, the implemented expert system shell uses certainty factors, which allow
it to perform inexact reasoning. The shell, named AFIT Backward Chainer, or ABC,
represents its knowledge in facts, rules, and frames. ABC has an explanation facility
that can explain how it derives a solution or why it asks particular questions when
seeking information from the user.

ABC expands upon an educational expert system shell called BC3. BC3, a rule-based
shell developed at AFIT, symbolizes its knowledge with OAV triples. The development of
ABC was accomplished using a rapid-prototype methodology.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
flUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS UNTASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22. OFFICE SYMBOL
Ed G. Clark, C , USAF (513) 255-3030 7 AFIT/ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

